These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 24099740)
1. Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1. Posada IM; Busto JV; Goñi FM; Alonso A Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):388-97. PubMed ID: 24099740 [TBL] [Abstract][Full Text] [Related]
2. Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles. Nicol F; Nir S; Szoka FC Biophys J; 2000 Feb; 78(2):818-29. PubMed ID: 10653794 [TBL] [Abstract][Full Text] [Related]
3. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
4. Membrane binding of human phospholipid scramblase 1 cytoplasmic domain. Posada IM; Sánchez-Magraner L; Hervás JH; Alonso A; Monaco HL; Goñi FM Biochim Biophys Acta; 2014 Jul; 1838(7):1785-92. PubMed ID: 24680654 [TBL] [Abstract][Full Text] [Related]
5. Interactions stabilizing the C-terminal helix of human phospholipid scramblase 1 in lipid bilayers: A computational study. Venken T; Schillinger AS; Fuglebakk E; Reuter N Biochim Biophys Acta Biomembr; 2017 Jul; 1859(7):1200-1210. PubMed ID: 28372945 [TBL] [Abstract][Full Text] [Related]
6. The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity. Francis VG; Mohammed AM; Aradhyam GK; Gummadi SN FEBS J; 2013 Jun; 280(12):2855-69. PubMed ID: 23590222 [TBL] [Abstract][Full Text] [Related]
7. The C-terminal transmembrane domain of human phospholipid scramblase 1 is essential for the protein flip-flop activity and Ca²⁺-binding. Sánchez-Magraner L; Posada IM; Andraka N; Contreras FX; Viguera AR; Guérin DM; Arrondo JL; Monaco HL; Goñi FM J Membr Biol; 2014 Feb; 247(2):155-65. PubMed ID: 24343571 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
9. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related]
10. A cholesterol recognition motif in human phospholipid scramblase 1. Posada IM; Fantini J; Contreras FX; Barrantes F; Alonso A; Goñi FM Biophys J; 2014 Sep; 107(6):1383-92. PubMed ID: 25229146 [TBL] [Abstract][Full Text] [Related]
11. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
12. Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop). LeBarron J; London E Biochim Biophys Acta; 2016 Aug; 1858(8):1812-20. PubMed ID: 27131444 [TBL] [Abstract][Full Text] [Related]
13. Penetration of three transmembrane segments of Slc11a1 in lipid bilayers. Qi H; Wang Y; Chu H; Wang W; Mao Q Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():82-92. PubMed ID: 24299979 [TBL] [Abstract][Full Text] [Related]
14. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Voglino L; McIntosh TJ; Simon SA Biochemistry; 1998 Sep; 37(35):12241-52. PubMed ID: 9724538 [TBL] [Abstract][Full Text] [Related]
15. The conformation of human phospholipid scramblase 1, as studied by infrared spectroscopy. Effects of calcium and detergent. Andraka N; Sánchez-Magraner L; García-Pacios M; Goñi FM; Arrondo JL Biochim Biophys Acta Biomembr; 2017 May; 1859(5):1019-1028. PubMed ID: 28238818 [TBL] [Abstract][Full Text] [Related]
16. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biophys J; 2004 Oct; 87(4):2470-82. PubMed ID: 15454444 [TBL] [Abstract][Full Text] [Related]
17. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems. Haratake M; Takahira E; Yoshida S; Osei-Asante S; Fuchigami T; Nakayama M Colloids Surf B Biointerfaces; 2013 Jul; 107():90-6. PubMed ID: 23466547 [TBL] [Abstract][Full Text] [Related]
18. Identity of a conserved motif in phospholipid scramblase that is required for Ca2+-accelerated transbilayer movement of membrane phospholipids. Zhou Q; Sims PJ; Wiedmer T Biochemistry; 1998 Feb; 37(8):2356-60. PubMed ID: 9485382 [TBL] [Abstract][Full Text] [Related]
19. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Kol MA; van Laak AN; Rijkers DT; Killian JA; de Kroon AI; de Kruijff B Biochemistry; 2003 Jan; 42(1):231-7. PubMed ID: 12515559 [TBL] [Abstract][Full Text] [Related]
20. The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers. Plasencia I; Rivas L; Keough KM; Marsh D; Pérez-Gil J Biochem J; 2004 Jan; 377(Pt 1):183-93. PubMed ID: 14514353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]