These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 2409975)
1. Catalase enhances damage to DNA by bleomycin-iron(II): the role of hydroxyl radicals. Gutteridge JM; Beard AP; Quinlan GJ Biochem Int; 1985 Mar; 10(3):441-9. PubMed ID: 2409975 [TBL] [Abstract][Full Text] [Related]
2. Damage to the bases in DNA induced by stimulated human neutrophils. Jackson JH; Gajewski E; Schraufstatter IU; Hyslop PA; Fuciarelli AF; Cochrane CG; Dizdaroglu M J Clin Invest; 1989 Nov; 84(5):1644-9. PubMed ID: 2553779 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604 [TBL] [Abstract][Full Text] [Related]
4. Induction of DNA breakage and suppression of DNA synthesis by the OH radical generated in a Fenton-like reaction. Sestili P; Piedimonte G; Cattabeni F; Cantoni O Biochem Int; 1986 Mar; 12(3):493-501. PubMed ID: 3011006 [TBL] [Abstract][Full Text] [Related]
5. Bleomycin-iron damage to DNA with formation of 8-hydroxydeoxyguanosine and base propenals. Indications that xanthine oxidase generates superoxide from DNA degradation products. Gutteridge JM; West M; Eneff K; Floyd RA Free Radic Res Commun; 1990; 10(3):159-65. PubMed ID: 1697821 [TBL] [Abstract][Full Text] [Related]
6. [Free oxygen radiacals and kidney diseases--part I]. Sakac V; Sakac M Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727 [TBL] [Abstract][Full Text] [Related]
8. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals, Flowers L; Ohnishi ST; Penning TM Biochemistry; 1997 Jul; 36(28):8640-8. PubMed ID: 9214311 [TBL] [Abstract][Full Text] [Related]
9. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals. Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296 [TBL] [Abstract][Full Text] [Related]
10. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. Gutteridge JM FEBS Lett; 1986 Jun; 201(2):291-5. PubMed ID: 2423372 [TBL] [Abstract][Full Text] [Related]
11. Thiol-dependent DNA damage produced by anthracycline-iron complexes. The structure-activity relationships and molecular mechanisms. Muindi J; Sinha BK; Gianni L; Myers C Mol Pharmacol; 1985 Mar; 27(3):356-65. PubMed ID: 2983184 [TBL] [Abstract][Full Text] [Related]
12. Identification of hydrogen peroxide and hydroxyl radicals as mediators of leukocyte-induced myocardial dysfunction. Limitation of infarct size with neutrophil inhibition and depletion. Hess ML; Rowe GT; Caplan M; Romson JL; Lucchesi B Adv Myocardiol; 1985; 5():159-75. PubMed ID: 2982204 [TBL] [Abstract][Full Text] [Related]
13. Copper(II)-albumin complex can activate hydrogen peroxide in the presence of biological reductants: first ESR evidence for the formation of hydroxyl radical. Ozawa T; Ueda J; Hanaki A Biochem Mol Biol Int; 1993 Feb; 29(2):247-53. PubMed ID: 8388292 [TBL] [Abstract][Full Text] [Related]
14. Bleomycin-dependent damage to the bases in DNA is a minor side reaction. Gajewski E; Aruoma OI; Dizdaroglu M; Halliwell B Biochemistry; 1991 Mar; 30(9):2444-8. PubMed ID: 1705818 [TBL] [Abstract][Full Text] [Related]
15. ADP-iron as a Fenton reactant: radical reactions detected by spin trapping, hydrogen abstraction, and aromatic hydroxylation. Gutteridge JM; Nagy I; Maidt L; Floyd RA Arch Biochem Biophys; 1990 Mar; 277(2):422-8. PubMed ID: 2155582 [TBL] [Abstract][Full Text] [Related]
16. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers. Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477 [TBL] [Abstract][Full Text] [Related]
17. Superoxide dismutase enhances the formation of hydroxyl radicals in the reaction of 3-hydroxyanthranilic acid with molecular oxygen. Iwahashi H; Ishii T; Sugata R; Kido R Biochem J; 1988 May; 251(3):893-9. PubMed ID: 2843167 [TBL] [Abstract][Full Text] [Related]
18. In vivo formation of hydroxyl radicals following intragastric administration of ferrous salt in rats. Kang JO; Slivka A; Slater G; Cohen G J Inorg Biochem; 1989 Jan; 35(1):55-69. PubMed ID: 2540265 [TBL] [Abstract][Full Text] [Related]
19. Formation of a hydroxyl radical by the myeloperoxidase-NADH-oxygen system. Fujimoto S; Kawakami N; Ohara A Biol Pharm Bull; 1993 Jun; 16(6):525-8. PubMed ID: 8395934 [TBL] [Abstract][Full Text] [Related]
20. Oxygen radical damage to DNA by rifamycin SV and copper ions. Quinlan GJ; Gutteridge JM Biochem Pharmacol; 1987 Nov; 36(21):3629-33. PubMed ID: 2823829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]