BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24100032)

  • 1. Identifying key amino acid residues that affect α-conotoxin AuIB inhibition of α3β4 nicotinic acetylcholine receptors.
    Grishin AA; Cuny H; Hung A; Clark RJ; Brust A; Akondi K; Alewood PF; Craik DJ; Adams DJ
    J Biol Chem; 2013 Nov; 288(48):34428-42. PubMed ID: 24100032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP.
    Ulens C; Hogg RC; Celie PH; Bertrand D; Tsetlin V; Smit AB; Sixma TK
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3615-20. PubMed ID: 16505382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical residue properties for potency and selectivity of α-Conotoxin RgIA towards α9α10 nicotinic acetylcholine receptors.
    Huynh PN; Harvey PJ; Gajewiak J; Craik DJ; Michael McIntosh J
    Biochem Pharmacol; 2020 Nov; 181():114124. PubMed ID: 32593612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potency- and Selectivity-Enhancing Mutations of Conotoxins for Nicotinic Acetylcholine Receptors Can Be Predicted Using Accurate Free-Energy Calculations.
    Katz D; DiMattia MA; Sindhikara D; Li H; Abraham N; Leffler AE
    Mar Drugs; 2021 Jun; 19(7):. PubMed ID: 34202022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Regulation of Betulinic Acid on α3β4 Nicotinic Acetylcholine Receptors.
    Lee S; Jung W; Eom S; Yeom HD; Park HD; Lee JH
    Molecules; 2021 May; 26(9):. PubMed ID: 34062829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Regulation of α3β4 Nicotinic Acetylcholine Receptors by Lupeol in Cardiovascular System.
    Eom S; Kim C; Yeom HD; Lee J; Lee S; Baek YB; Na J; Park SI; Kim GY; Lee CM; Lee JH
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32570692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell surface localization of α3β4 nicotinic acetylcholine receptors is regulated by N-cadherin homotypic binding and actomyosin contractility.
    Brusés JL
    PLoS One; 2013; 8(4):e62435. PubMed ID: 23626818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of human α3β4α5 nicotinic acetylcholine receptors is reduced by the α5(D398N) variant.
    George AA; Lucero LM; Damaj MI; Lukas RJ; Chen X; Whiteaker P
    J Biol Chem; 2012 Jul; 287(30):25151-62. PubMed ID: 22665477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Antagonism of α9α10 nAChR and GABA
    Li X; Tae HS; Chen S; Yousuf A; Huang L; Zhang J; Jiang T; Adams DJ; Yu R
    J Med Chem; 2024 Jan; 67(2):971-987. PubMed ID: 38217860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tabernanthalog and ibogainalog inhibit the α7 and α9α10 nicotinic acetylcholine receptors via different mechanisms and with higher potency than the GABA
    Tae HS; Ortells MO; Yousuf A; Xu SQ; Akk G; Adams DJ; Arias HR
    Biochem Pharmacol; 2024 May; 223():116183. PubMed ID: 38580167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Investigation of Three-Finger Toxin-nAChR Interactions through Rosetta Protein Docking.
    Gulsevin A; Meiler J
    Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32947868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design of Potent α-Conotoxin PeIA Analogues with Non-Natural Amino Acids for the Inhibition of Human α9α10 Nicotinic Acetylcholine Receptors.
    Li T; Tae HS; Liang J; Zhang Z; Li X; Jiang T; Adams DJ; Yu R
    Mar Drugs; 2024 Feb; 22(3):. PubMed ID: 38535451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release.
    Luo S; Kulak JM; Cartier GE; Jacobsen RB; Yoshikami D; Olivera BM; McIntosh JM
    J Neurosci; 1998 Nov; 18(21):8571-9. PubMed ID: 9786965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What We Have Gained from Ibogaine: α3β4 Nicotinic Acetylcholine Receptor Inhibitors as Treatments for Substance Use Disorders.
    Straub CJ; Rusali LE; Kremiller KM; Riley AP
    J Med Chem; 2023 Jan; 66(1):107-121. PubMed ID: 36440853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications.
    Kasheverov I; Kudryavtsev D; Shelukhina I; Nikolaev G; Utkin Y; Tsetlin V
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor.
    Wu X; Craik DJ; Kaas Q
    Mar Drugs; 2021 Aug; 19(9):. PubMed ID: 34564144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors.
    Bekbossynova A; Zharylgap A; Filchakova O
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34204855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α-Conotoxin Peptidomimetics: Probing the Minimal Binding Motif for Effective Analgesia.
    Kennedy AC; Belgi A; Husselbee BW; Spanswick D; Norton RS; Robinson AJ
    Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32781580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of the α3β2 Nicotinic Acetylcholine Receptor Interfaces with α-Conotoxin LsIA and its Carboxylated C-terminus Analogue: Molecular Dynamics Simulations.
    Wen J; Adams DJ; Hung A
    Mar Drugs; 2020 Jul; 18(7):. PubMed ID: 32635340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. α-Conotoxin VnIB from Conus ventricosus is a potent and selective antagonist of α6β4* nicotinic acetylcholine receptors.
    van Hout M; Valdes A; Christensen SB; Tran PT; Watkins M; Gajewiak J; Jensen AA; Olivera BM; McIntosh JM
    Neuropharmacology; 2019 Oct; 157():107691. PubMed ID: 31255696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.