These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 2410019)
1. Diffusion-enhanced lanthanide energy-transfer study of DNA-bound cobalt(III) bleomycins: comparisons of accessibility and electrostatic potential with DNA complexes of ethidium and acridine orange. Wensel TG; Chang CH; Meares CF Biochemistry; 1985 Jun; 24(12):3060-9. PubMed ID: 2410019 [TBL] [Abstract][Full Text] [Related]
2. Characterization of transferrin metal-binding sites by diffusion-enhanced energy transfer. Yeh SM; Meares CF Biochemistry; 1980 Oct; 19(22):5057-62. PubMed ID: 6779862 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes. Maliwal BP; Kuśba J; Lakowicz JR Biopolymers; 1995 Feb; 35(2):245-55. PubMed ID: 7696569 [TBL] [Abstract][Full Text] [Related]
4. Determination of electrostatic potential around specific locations on the surface of actin by diffusion-enhanced fluorescence resonance energy transfer. Yamamoto T; Nakayama S; Kobayashi N; Munekata E; Ando T J Mol Biol; 1994 Sep; 241(5):714-31. PubMed ID: 8071995 [TBL] [Abstract][Full Text] [Related]
5. Interaction of two peptide-acridine conjugates containing the SPKK peptide motif with DNA and chromatin. Flock S; Bailly F; Bailly C; Waring MJ; Hénichart JP; Colson P; Houssier C J Biomol Struct Dyn; 1994 Feb; 11(4):881-900. PubMed ID: 8204221 [TBL] [Abstract][Full Text] [Related]
6. Increased accessibility of bases in DNA upon binding of acridine orange. Kapuscinski J; Darzynkiewicz Z Nucleic Acids Res; 1983 Nov; 11(21):7555-68. PubMed ID: 6647029 [TBL] [Abstract][Full Text] [Related]
7. Diffusion-enhanced energy transfer shows accessibility of ribonucleic acid polymerase inhibitor binding sites. Meares CF; Rice LS Biochemistry; 1981 Feb; 20(3):610-7. PubMed ID: 7011368 [TBL] [Abstract][Full Text] [Related]
8. Diffusion-enhanced energy transfer investigation of histone H5 in chromatin with a fluorescently-labelled antibody fragment Fab'. Sarlet G; Muller S; Houssier C J Biomol Struct Dyn; 1992 Aug; 10(1):35-47. PubMed ID: 1418745 [TBL] [Abstract][Full Text] [Related]
9. Energy transfer between terbium (III) and cobalt (II) in thermolysin: a new class of metal--metal distance probes. Horrocks WD; Holmquist B; Vallee BL Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4764-8. PubMed ID: 1061067 [TBL] [Abstract][Full Text] [Related]
10. Interaction of paraquat with calf thymus DNA: a terbium(III) luminescent probe and multispectral study. Tong C; Xiang G; Bai Y J Agric Food Chem; 2010 May; 58(9):5257-62. PubMed ID: 20402507 [TBL] [Abstract][Full Text] [Related]
11. A versatile method for quantification of DNA and PCR products based on time-resolved EuIII luminescence. Song B; Vandevyver CD; Deiters E; Chauvin AS; Hemmilä I; Bünzli JC Analyst; 2008 Dec; 133(12):1749-56. PubMed ID: 19082079 [TBL] [Abstract][Full Text] [Related]
12. DNA Bifunctional intercalators. 2. Fluorescence properties and DNA binding interaction of an ethidium homodimer and an acridine ethidium heterodimer. Gaugain B; Barbet J; Capelle N; Roques BP; Le Pecq JB Biochemistry; 1978 Nov; 17(24):5078-88. PubMed ID: 569495 [TBL] [Abstract][Full Text] [Related]
13. Terbium(III) chelate as an efficient donor for multiple-wavelength fluorescent acceptors. Kokko T; Kokko L; Soukka T J Fluoresc; 2009 Jan; 19(1):159-64. PubMed ID: 18642064 [TBL] [Abstract][Full Text] [Related]
14. Heterodimeric DNA-binding dyes designed for energy transfer: synthesis and spectroscopic properties. Benson SC; Singh P; Glazer AN Nucleic Acids Res; 1993 Dec; 21(24):5727-35. PubMed ID: 8284221 [TBL] [Abstract][Full Text] [Related]
16. [Binding of acridine orange and ethidium bromide to DNA in phage lambda]. Shurdov MA; Kishchenko GP Biofizika; 1982; 27(2):222-4. PubMed ID: 6462179 [TBL] [Abstract][Full Text] [Related]
17. Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: attachment to DNA and energy transfer measurements. Li M; Selvin PR Bioconjug Chem; 1997; 8(2):127-32. PubMed ID: 9095352 [TBL] [Abstract][Full Text] [Related]
18. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Selvin PR; Hearst JE Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10024-8. PubMed ID: 7937831 [TBL] [Abstract][Full Text] [Related]
19. On the possibility of long-wavelength long-lifetime high-quantum-yield luminophores. Lakowicz JR; Piszczek G; Kang JS Anal Biochem; 2001 Jan; 288(1):62-75. PubMed ID: 11141307 [TBL] [Abstract][Full Text] [Related]
20. Terbium (III) chelate complexes as fluorescence energy transfer donor in the determination of formaldehyde in aqueous solutions. Chen H; Zhou C; Wang L; Chen J; Ling B; Fu J Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):371-4. PubMed ID: 21081282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]