BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24100477)

  • 1. Cone-rod dysfunction is a sign of early-onset high myopia.
    Wang P; Xiao X; Huang L; Guo X; Zhang Q
    Optom Vis Sci; 2013 Nov; 90(11):1327-30. PubMed ID: 24100477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Rod and Cone Function in 6.5-Year-Old Children Born Extremely Preterm.
    Molnar AEC; Andréasson SO; Larsson EKB; Åkerblom HM; Holmström GE
    JAMA Ophthalmol; 2017 Aug; 135(8):854-861. PubMed ID: 28662245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequent mutations of RetNet genes in eoHM: Further confirmation in 325 probands and comparison with late-onset high myopia based on exome sequencing.
    Zhou L; Xiao X; Li S; Jia X; Zhang Q
    Exp Eye Res; 2018 Jun; 171():76-91. PubMed ID: 29453956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment.
    Barone I; Novelli E; Strettoi E
    Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function.
    Khan NW; Wissinger B; Kohl S; Sieving PA
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3864-71. PubMed ID: 17652762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rod and rod-driven function in achromatopsia and blue cone monochromatism.
    Moskowitz A; Hansen RM; Akula JD; Eklund SE; Fulton AB
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):950-8. PubMed ID: 18824728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myopia and Late-Onset Progressive Cone Dystrophy Associate to LVAVA/MVAVA Exon 3 Interchange Haplotypes of Opsin Genes on Chromosome X.
    Orosz O; Rajta I; Vajas A; Takács L; Csutak A; Fodor M; Kolozsvári B; Resch M; Sényi K; Lesch B; Szabó V; Berta A; Balogh I; Losonczy G
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1834-1842. PubMed ID: 28358949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina.
    Cuenca N; Pinilla I; Sauvé Y; Lu B; Wang S; Lund RD
    Neuroscience; 2004; 127(2):301-17. PubMed ID: 15262321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroretinographic findings in the Standard Wire Haired Dachshund with inherited early onset cone-rod dystrophy.
    Ropstad EO; Bjerkås E; Narfström K
    Doc Ophthalmol; 2007 Jan; 114(1):27-36. PubMed ID: 17180612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human retinal disease from AIPL1 gene mutations: foveal cone loss with minimal macular photoreceptors and rod function remaining.
    Jacobson SG; Cideciyan AV; Aleman TS; Sumaroka A; Roman AJ; Swider M; Schwartz SB; Banin E; Stone EM
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):70-9. PubMed ID: 20702822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of post-receporal cells to the cone a-wave of the human electroretinogram in congenital stationary night blindness and autoimmune-like retinopathy.
    Bradshaw K; Hanitzsch R
    Vision Res; 2010 Nov; 50(23):2505-14. PubMed ID: 20800609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rod and cone contributions to the a-wave of the electroretinogram of the macaque.
    Robson JG; Saszik SM; Ahmed J; Frishman LJ
    J Physiol; 2003 Mar; 547(Pt 2):509-30. PubMed ID: 12562933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Childhood-onset genetic cone-rod photoreceptor diseases and underlying pathobiology.
    Garafalo AV; Sheplock R; Sumaroka A; Roman AJ; Cideciyan AV; Jacobson SG
    EBioMedicine; 2021 Jan; 63():103200. PubMed ID: 33421946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic characterization of patients with early-onset high myopia due to mutations in
    Zhou L; Xiao X; Li S; Jia X; Wang P; Sun W; Zhang F; Li J; Li T; Zhang Q
    Mol Vis; 2018; 24():560-573. PubMed ID: 30181686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cone dystrophy with "supernormal" rod ERG: psychophysical testing shows comparable rod and cone temporal sensitivity losses with no gain in rod function.
    Stockman A; Henning GB; Michaelides M; Moore AT; Webster AR; Cammack J; Ripamonti C
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):832-40. PubMed ID: 24370833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Cone dystrophy with supernormal rod electroretinogram": a comprehensive genotype/phenotype study including fundus autofluorescence and extensive electrophysiology.
    Robson AG; Webster AR; Michaelides M; Downes SM; Cowing JA; Hunt DM; Moore AT; Holder GE
    Retina; 2010 Jan; 30(1):51-62. PubMed ID: 19952985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-field fundus autofluorescence abnormalities and visual function in patients with cone and cone-rod dystrophies.
    Oishi M; Oishi A; Ogino K; Makiyama Y; Gotoh N; Kurimoto M; Yoshimura N
    Invest Ophthalmol Vis Sci; 2014 May; 55(6):3572-7. PubMed ID: 24845635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early-onset foveal involvement in retinitis punctata albescens with mutations in RLBP1.
    Dessalces E; Bocquet B; Bourien J; Zanlonghi X; Verdet R; Meunier I; Hamel CP
    JAMA Ophthalmol; 2013 Oct; 131(10):1314-23. PubMed ID: 23929416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone and rod dysfunction in fundus albipunctatus with RDH5 mutation: an electrophysiological study.
    Niwa Y; Kondo M; Ueno S; Nakamura M; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1480-5. PubMed ID: 15790919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.