These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 24100477)

  • 41. Predominant loss of the photopic negative response in central retinal artery occlusion.
    Machida S; Gotoh Y; Tanaka M; Tazawa Y
    Am J Ophthalmol; 2004 May; 137(5):938-40. PubMed ID: 15126164
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coexistence of Posterior Staphyloma, Retinitis Pigmentosa and Moderate Myopia.
    Ilhan A; Yolcu U; Diner O; Uzun S; Gundogan FC
    J Coll Physicians Surg Pak; 2016 Jan; 26(1):70-1. PubMed ID: 26787037
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa.
    Komeima K; Rogers BS; Campochiaro PA
    J Cell Physiol; 2007 Dec; 213(3):809-15. PubMed ID: 17520694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys.
    Kinoshita J; Iwata N; Kimotsuki T; Yasuda M
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):881-92. PubMed ID: 24436189
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of stimulus size and luminance on the rod-, cone-, and melanopsin-mediated pupillary light reflex.
    Park JC; McAnany JJ
    J Vis; 2015 Mar; 15(3):. PubMed ID: 25788707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electroretinography is necessary for spasmus nutans diagnosis.
    Smith DE; Fitzgerald K; Stass-Isern M; Cibis GW
    Pediatr Neurol; 2000 Jul; 23(1):33-6. PubMed ID: 10963967
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cone dystrophy with supernormal rod response is strictly associated with mutations in KCNV2.
    Wissinger B; Dangel S; Jägle H; Hansen L; Baumann B; Rudolph G; Wolf C; Bonin M; Koeppen K; Ladewig T; Kohl S; Zrenner E; Rosenberg T
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):751-7. PubMed ID: 18235024
    [TBL] [Abstract][Full Text] [Related]  

  • 51. C-wave study in cone dysfunction syndrome.
    Moschos M; Brouzas D; Papantonis F; Chatzis V
    Ophthalmologica; 1993; 207(1):37-41. PubMed ID: 8278172
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 'Cone dystrophy with supranormal rod response' in children.
    Khan AO; Alrashed M; Alkuraya FS
    Br J Ophthalmol; 2012 Mar; 96(3):422-6. PubMed ID: 21900228
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Progressive cone dystrophy with deutan genotype and phenotype.
    Scholl HP; Kremers J; Besch D; Zrenner E; Jägle H
    Graefes Arch Clin Exp Ophthalmol; 2006 Feb; 244(2):183-91. PubMed ID: 16082559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. X-linked cone dysfunction syndrome with myopia and protanopia.
    Michaelides M; Johnson S; Bradshaw K; Holder GE; Simunovic MP; Mollon JD; Moore AT; Hunt DM
    Ophthalmology; 2005 Aug; 112(8):1448-54. PubMed ID: 15953640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Link between parental myopia and early-onset high myopia: Insights from a clinical retrospective analysis.
    Chamarty S; Kamalon S; Madishetti N; Verkicharla PK
    Ophthalmic Physiol Opt; 2024 May; ():. PubMed ID: 38803137
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Genetic Confirmation and Clinical Characterization of LOXL3-Associated MYP28: A Common Type of Recessive Extreme High Myopia.
    Jiang Y; Zhou L; Wang Y; Ouyang J; Li S; Xiao X; Jia X; Wang J; Yi Z; Sun W; Jiao X; Wang P; Hejtmancik JF; Zhang Q
    Invest Ophthalmol Vis Sci; 2023 Mar; 64(3):14. PubMed ID: 36917121
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trio-based whole-exome sequencing reveals mutations in early-onset high myopia.
    Ye L; Guo YM; Cai YX; Wei J; Huang J; Bi J; Chen D; Li FF; Huang XF
    BMJ Open Ophthalmol; 2024 May; 9(1):. PubMed ID: 38789272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predominant loss of rod-mediated electroretinogram response in a case of acute annular outer retinopathy.
    Yokoyama D; Machida S; Takahashi T; Tamada K; Kurosaka D
    Jpn J Ophthalmol; 2009 Sep; 53(5):558-60. PubMed ID: 19847620
    [No Abstract]   [Full Text] [Related]  

  • 59. Genetic and clinical landscape of
    Wang Y; Xiao X; Li X; Yi Z; Jiang Y; Zhang F; Zhou L; Li S; Jia X; Sun W; Wang P; Zhang Q
    Br J Ophthalmol; 2023 Oct; 107(10):1545-1553. PubMed ID: 36180177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unique Haplotypes in OPN1LW as a Common Cause of High Myopia With or Without Protanopia: A Potential Window Into Myopic Mechanism.
    Wang Y; Sun W; Xiao X; Jiang Y; Ouyang J; Wang J; Yi Z; Li S; Jia X; Wang P; Hejtmancik JF; Zhang Q
    Invest Ophthalmol Vis Sci; 2023 Apr; 64(4):29. PubMed ID: 37097228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.