BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24100799)

  • 1. Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks.
    Evrendilek F; Karakaya N
    Environ Monit Assess; 2014 Mar; 186(3):1583-91. PubMed ID: 24100799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.
    Wen X; Fang J; Diao M; Zhang C
    Environ Monit Assess; 2013 May; 185(5):4361-71. PubMed ID: 23001527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.
    Najah A; El-Shafie A; Karim OA; El-Shafie AH
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1658-1670. PubMed ID: 23949111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of different wavelet-based neural network models to predict sewage sludge quantity in wastewater treatment plant.
    Zeinolabedini M; Najafzadeh M
    Environ Monit Assess; 2019 Feb; 191(3):163. PubMed ID: 30772930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study.
    Antanasijević D; Pocajt V; Povrenović D; Perić-Grujić A; Ristić M
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):9006-13. PubMed ID: 23764983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid WT-CNN-GRU-based model for the estimation of reservoir water quality variables considering spatio-temporal features.
    Zamani MG; Nikoo MR; Al-Rawas G; Nazari R; Rastad D; Gandomi AH
    J Environ Manage; 2024 May; 358():120756. PubMed ID: 38599080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network modeling of dissolved oxygen in reservoir.
    Chen WB; Liu WC
    Environ Monit Assess; 2014 Feb; 186(2):1203-17. PubMed ID: 24078053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Artificial Neural Networks as a Predictive Tool of Dissolved Oxygen Present in Surface Water Discharged in the Coastal Lagoon of the Mar Menor (Murcia, Spain).
    García Del Toro EM; Mateo LF; García-Salgado S; Más-López MI; Quijano MÁ
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670".
    Rajaee T; Khani S
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):938-40. PubMed ID: 26013741
    [No Abstract]   [Full Text] [Related]  

  • 10. Comment on "Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670".
    Heddam S
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3983. PubMed ID: 25391234
    [No Abstract]   [Full Text] [Related]  

  • 11. Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals.
    Ayrulu-Erdem B; Barshan B
    Sensors (Basel); 2011; 11(2):1721-43. PubMed ID: 22319378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of ultraviolet-visible spectrophotometry associated with artificial neural networks as an alternative for determining the water quality index.
    Alves EM; Rodrigues RJ; Dos Santos Corrêa C; Fidemann T; Rocha JC; Buzzo JLL; de Oliva Neto P; Núñez EGF
    Environ Monit Assess; 2018 May; 190(6):319. PubMed ID: 29717330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolved Oxygen Concentration Prediction Model Based on WT-MIC-GRU-A Case Study in Dish-Shaped Lakes of Poyang Lake.
    Chi D; Huang Q; Liu L
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA.
    Heddam S
    Environ Technol; 2014 Aug; 35(13-16):1650-7. PubMed ID: 24956755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient strategy for predicting river dissolved oxygen concentration: application of deep recurrent neural network model.
    Moghadam SV; Sharafati A; Feizi H; Marjaie SMS; Asadollah SBHS; Motta D
    Environ Monit Assess; 2021 Nov; 193(12):798. PubMed ID: 34773156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogeochemical controls on Diel cycling of stable isotopes of dissolved O2 and dissolved inorganic carbon in the Big Hole River, Montana.
    Parker SR; Poulson SR; Gammons CH; DeGrandpre MD
    Environ Sci Technol; 2005 Sep; 39(18):7134-40. PubMed ID: 16201639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: case study of Connecticut River at Middle Haddam Station, USA.
    Heddam S
    Environ Monit Assess; 2014 Nov; 186(11):7837-48. PubMed ID: 25112840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wavelet-based method for MRI liver image denoising.
    Ali MN
    Biomed Tech (Berl); 2019 Dec; 64(6):699-709. PubMed ID: 31145685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting river dissolved oxygen time series based on stand-alone models and hybrid wavelet-based models.
    Xu C; Chen X; Zhang L
    J Environ Manage; 2021 Oct; 295():113085. PubMed ID: 34147993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trend analysis and modeling of nutrient concentrations in a preliminary eutrophic lake in China.
    Tong X; Wang X; Li Z; Yang P; Zhao M; Xu K
    Environ Monit Assess; 2019 May; 191(6):365. PubMed ID: 31089888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.