These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 24101456)

  • 1. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms.
    Agarwal R; Singh V; Jurney P; Shi L; Sreenivasan SV; Roy K
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17247-52. PubMed ID: 24101456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size Dependent Cellular Uptake of Rod-like Bionanoparticles with Different Aspect Ratios.
    Liu X; Wu F; Tian Y; Wu M; Zhou Q; Jiang S; Niu Z
    Sci Rep; 2016 Apr; 6():24567. PubMed ID: 27080246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
    Debnath K; Pal S; Jana NR
    Acc Chem Res; 2021 Jul; 54(14):2916-2927. PubMed ID: 34232016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis.
    Qaddoumi MG; Gukasyan HJ; Davda J; Labhasetwar V; Kim KJ; Lee VH
    Mol Vis; 2003 Oct; 9():559-68. PubMed ID: 14566223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge.
    Bannunah AM; Vllasaliu D; Lord J; Stolnik S
    Mol Pharm; 2014 Dec; 11(12):4363-73. PubMed ID: 25327847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of the influence of nanoparticle shape on clathrin-mediated endocytosis.
    Li Y; Zhang M; Zhang Y; Niu X; Liu Z; Yue T; Zhang W
    J Mater Chem B; 2023 Jul; 11(27):6319-6334. PubMed ID: 37232123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts.
    da Luz CM; Boyles MS; Falagan-Lotsch P; Pereira MR; Tutumi HR; de Oliveira Santos E; Martins NB; Himly M; Sommer A; Foissner I; Duschl A; Granjeiro JM; Leite PE
    J Nanobiotechnology; 2017 Jan; 15(1):11. PubMed ID: 28143572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ exploration of characteristics of macropinocytosis and size range of internalized substances in cells by 3D-structured illumination microscopy.
    Jin J; Shen Y; Zhang B; Deng R; Huang D; Lu T; Sun F; Xu S; Liang C
    Int J Nanomedicine; 2018; 13():5321-5333. PubMed ID: 30254437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa.
    Bejgum BC; Donovan MD
    Mol Pharm; 2021 Jan; 18(1):429-440. PubMed ID: 33346666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis.
    Rejman J; Oberle V; Zuhorn IS; Hoekstra D
    Biochem J; 2004 Jan; 377(Pt 1):159-69. PubMed ID: 14505488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the Microparticle Shape on Cellular Uptake.
    He Y; Park K
    Mol Pharm; 2016 Jul; 13(7):2164-71. PubMed ID: 26905216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures.
    Fiorentino I; Gualtieri R; Barbato V; Mollo V; Braun S; Angrisani A; Turano M; Furia M; Netti PA; Guarnieri D; Fusco S; Talevi R
    Exp Cell Res; 2015 Jan; 330(2):240-247. PubMed ID: 25246129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    Small; 2011 Dec; 7(23):3341-9. PubMed ID: 22009913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entry modes of ellipsoidal nanoparticles on a membrane during clathrin-mediated endocytosis.
    Deng H; Dutta P; Liu J
    Soft Matter; 2019 Jun; 15(25):5128-5137. PubMed ID: 31190048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae.
    Voigt J; Christensen J; Shastri VP
    Proc Natl Acad Sci U S A; 2014 Feb; 111(8):2942-7. PubMed ID: 24516167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of particle design on cellular internalization pathways.
    Gratton SE; Ropp PA; Pohlhaus PD; Luft JC; Madden VJ; Napier ME; DeSimone JM
    Proc Natl Acad Sci U S A; 2008 Aug; 105(33):11613-8. PubMed ID: 18697944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery.
    Tsuji T; Yoshitomi H; Usukura J
    Microscopy (Oxf); 2013 Jun; 62(3):341-52. PubMed ID: 23204307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of a cationic nanoemulsome for intratumoral drug delivery and its enhancing effect on cellular uptake in vitro.
    Li H; Xiao Y; Niu J; Chen X; Ping Q
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8547-55. PubMed ID: 22400223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and cytotoxicity of citrate-coated gold nanospheres: Comparative studies on human endothelial and epithelial cells.
    Freese C; Uboldi C; Gibson MI; Unger RE; Weksler BB; Romero IA; Couraud PO; Kirkpatrick CJ
    Part Fibre Toxicol; 2012 Jul; 9():23. PubMed ID: 22759355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.