These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24101985)

  • 1. Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?
    Robinet C; Rousselet J; Pineau P; Miard F; Roques A
    Ecol Evol; 2013 Sep; 3(9):2947-57. PubMed ID: 24101985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of heat waves on embryo mortality in the pine processionary moth.
    Rocha S; Kerdelhué C; Ben Jamaa ML; Dhahri S; Burban C; Branco M
    Bull Entomol Res; 2017 Oct; 107(5):583-591. PubMed ID: 28185608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When insect pests build their own thermal niche: The hot nest of the pine processionary moth.
    Poitou L; Robinet C; Suppo C; Rousselet J; Laparie M; Pincebourde S
    J Therm Biol; 2021 May; 98():102947. PubMed ID: 34016364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the expansion of the pine processionary moth, due to global warming, impacting the endangered Spanish moon moth through an induced change in food quality?
    Imbert CE; Goussard F; Roques A
    Integr Zool; 2012 Jun; 7(2):147-57. PubMed ID: 22691198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quaternary history and contemporary patterns in a currently expanding species.
    Kerdelhué C; Zane L; Simonato M; Salvato P; Rousselet J; Roques A; Battisti A
    BMC Evol Biol; 2009 Sep; 9():220. PubMed ID: 19732434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of climate on pine processionary moth fecundity and on its egg parasitoids.
    Tiberi R; Bracalini M; Croci F; Tellini Florenzano G; Panzavolta T
    Ecol Evol; 2015 Nov; 5(22):5372-5382. PubMed ID: 30151139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of two phenologically divergent populations of the pine processionary moth (Thaumetopoea pityocampa) by de novo transcriptome sequencing.
    Gschloessl B; Vogel H; Burban C; Heckel D; Streiff R; Kerdelhué C
    Insect Biochem Mol Biol; 2014 Mar; 46():31-42. PubMed ID: 24468684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting Patterns of Host Adaptation in Two Egg Parasitoids of the Pine Processionary Moth (Lepidoptera: Thaumetopoeidae).
    Ruschioni S; Riolo P; Isidoro N; Romani R; Petrucco-Toffolo E; Zovi D; Battisti A
    Environ Entomol; 2015 Jun; 44(3):480-7. PubMed ID: 26313953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Looking Beyond the Large Scale Effects of Global Change: Local Phenologies Can Result in Critical Heterogeneity in the Pine Processionary Moth.
    Robinet C; Laparie M; Rousselet J
    Front Physiol; 2015; 6():334. PubMed ID: 26635620
    [No Abstract]   [Full Text] [Related]  

  • 10. Range-Expansion in Processionary Moths and Biological Control.
    de Boer JG; Harvey JA
    Insects; 2020 Apr; 11(5):. PubMed ID: 32353938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the time-scale dependence of delayed interactions: A heat wave during the egg stage shapes how a pesticide interacts with a successive heat wave in the larval stage.
    Janssens L; Tüzün N; Stoks R
    Environ Pollut; 2017 Nov; 230():351-359. PubMed ID: 28668596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mortality of Eggs and Newly Hatched Larvae of Lobesia botrana (Lepidoptera: Tortricidae) Exposed to High Temperatures in the Laboratory.
    Kiaeian Moosavi F; Cargnus E; Pavan F; Zandigiacomo P
    Environ Entomol; 2017 Jun; 46(3):700-707. PubMed ID: 28369280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Winter temperature predicts prolonged diapause in pine processionary moth species across their geographic range.
    Salman MHR; Bonsignore CP; El Alaoui El Fels A; Giomi F; Hodar JA; Laparie M; Marini L; Merel C; Zalucki MP; Zamoum M; Battisti A
    PeerJ; 2019; 7():e6530. PubMed ID: 30842907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Variation in Thaumetopoea pityocampa infestation rate of Aleppo pine: Effect on dendrometric parameters in the Djelfa region forests (Saharan Atlas, Algeria)].
    Mecheri H; Kouidri M; Boukheroufa-Sakraoui F; Adamou AE
    C R Biol; 2018; 341(7-8):380-386. PubMed ID: 30177499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate warming and heat waves alter harmful cyanobacterial blooms along the benthic-pelagic interface.
    Urrutia-Cordero P; Zhang H; Chaguaceda F; Geng H; Hansson LA
    Ecology; 2020 Jul; 101(7):e03025. PubMed ID: 32083737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processionary Moths and Associated Urtication Risk: Global Change-Driven Effects.
    Battisti A; Larsson S; Roques A
    Annu Rev Entomol; 2017 Jan; 62():323-342. PubMed ID: 27860523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.
    Pincebourde S; Sinoquet H; Combes D; Casas J
    J Anim Ecol; 2007 May; 76(3):424-38. PubMed ID: 17439460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial effects of a heat wave: higher growth and immune components driven by a higher food intake.
    Van Dievel M; Stoks R; Janssens L
    J Exp Biol; 2017 Nov; 220(Pt 21):3908-3915. PubMed ID: 28839009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe.
    Bezirtzoglou C; Dekas K; Charvalos E
    Anaerobe; 2011 Dec; 17(6):337-40. PubMed ID: 21664978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.