These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Inactivation of Vibrio vulnificus hemolysin through mutation of the N- or C-terminus of the lectin-like domain. Miyoshi S; Abe Y; Senoh M; Mizuno T; Maehara Y; Nakao H Toxicon; 2011 May; 57(6):904-8. PubMed ID: 21426913 [TBL] [Abstract][Full Text] [Related]
23. Partial oligomerization of pyolysin induced by a disulfide-tethered mutant. Pokrajac L; Baik C; Harris JR; Sarraf NS; Palmer M Biochem Cell Biol; 2012 Dec; 90(6):709-17. PubMed ID: 23016571 [TBL] [Abstract][Full Text] [Related]
24. Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Gilbert RJ; Jiménez JL; Chen S; Tickle IJ; Rossjohn J; Parker M; Andrew PW; Saibil HR Cell; 1999 May; 97(5):647-55. PubMed ID: 10367893 [TBL] [Abstract][Full Text] [Related]
25. Tyrosine in the hinge region of the pore-forming motif regulates oligomeric β-barrel pore formation by Vibrio cholerae cytolysin. Mondal AK; Verma P; Sengupta N; Dutta S; Bhushan Pandit S; Chattopadhyay K Mol Microbiol; 2021 Apr; 115(4):508-525. PubMed ID: 33089544 [TBL] [Abstract][Full Text] [Related]
26. Revisiting the oligomerization mechanism of Vibrio cholerae cytolysin, a beta-barrel pore-forming toxin. Rai AK; Chattopadhyay K Biochem Biophys Res Commun; 2016 Jun; 474(3):421-427. PubMed ID: 27150630 [TBL] [Abstract][Full Text] [Related]
27. Modulation of Vibrio mimicus hemolysin through limited proteolysis by an endogenous metalloprotease. Mizuno T; Sultan SZ; Kaneko Y; Yoshimura T; Maehara Y; Nakao H; Tsuchiya T; Shinoda S; Miyoshi S FEBS J; 2009 Feb; 276(3):825-34. PubMed ID: 19143841 [TBL] [Abstract][Full Text] [Related]
28. Revisiting the role of cholesterol in regulating the pore-formation mechanism of Kathuria R; Mondal AK; Sharma R; Bhattacharyya S; Chattopadhyay K Biochem J; 2018 Oct; 475(19):3039-3055. PubMed ID: 30206140 [No Abstract] [Full Text] [Related]
29. Functional mapping of the lectin activity site on the β-prism domain of vibrio cholerae cytolysin: implications for the membrane pore-formation mechanism of the toxin. Rai AK; Paul K; Chattopadhyay K J Biol Chem; 2013 Jan; 288(3):1665-73. PubMed ID: 23209283 [TBL] [Abstract][Full Text] [Related]
30. Vibrio cholerae cytolysin: structure-function mechanism of an atypical β-barrel pore-forming toxin. Rai AK; Chattopadhyay K Adv Exp Med Biol; 2015; 842():109-25. PubMed ID: 25408339 [No Abstract] [Full Text] [Related]
31. In vitro proteolytic processing and activation of the recombinant precursor of El Tor cytolysin/hemolysin (pro-HlyA) of Vibrio cholerae by soluble hemagglutinin/protease of V. cholerae, trypsin, and other proteases. Nagamune K; Yamamoto K; Naka A; Matsuyama J; Miwatani T; Honda T Infect Immun; 1996 Nov; 64(11):4655-8. PubMed ID: 8890221 [TBL] [Abstract][Full Text] [Related]
32. Membrane insertion of the heptameric staphylococcal alpha-toxin pore. A domino-like structural transition that is allosterically modulated by the target cell membrane. Valeva A; Schnabel R; Walev I; Boukhallouk F; Bhakdi S; Palmer M J Biol Chem; 2001 May; 276(18):14835-41. PubMed ID: 11279048 [TBL] [Abstract][Full Text] [Related]
33. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Kaneko J; Kamio Y Biosci Biotechnol Biochem; 2004 May; 68(5):981-1003. PubMed ID: 15170101 [TBL] [Abstract][Full Text] [Related]
34. Both polarity and aromatic ring in the side chain of tryptophan 246 are involved in binding activity of Vibrio vulnificus hemolysin to target cells. Kashimoto T; Akita T; Kado T; Yamazaki K; Ueno S Microb Pathog; 2017 Aug; 109():71-77. PubMed ID: 28546115 [TBL] [Abstract][Full Text] [Related]
35. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxin Vibrio cholerae cytolysin. Rai AK; Chattopadhyay K Mol Microbiol; 2015 Sep; 97(6):1051-62. PubMed ID: 26059432 [TBL] [Abstract][Full Text] [Related]
36. Conformational changes during pore formation by the perforin-related protein pleurotolysin. Lukoyanova N; Kondos SC; Farabella I; Law RH; Reboul CF; Caradoc-Davies TT; Spicer BA; Kleifeld O; Traore DA; Ekkel SM; Voskoboinik I; Trapani JA; Hatfaludi T; Oliver K; Hotze EM; Tweten RK; Whisstock JC; Topf M; Saibil HR; Dunstone MA PLoS Biol; 2015 Feb; 13(2):e1002049. PubMed ID: 25654333 [TBL] [Abstract][Full Text] [Related]
37. Structural changes of the Cry1Ac oligomeric pre-pore from bacillus thuringiensis induced by N-acetylgalactosamine facilitates toxin membrane insertion. Pardo-López L; Gómez I; Rausell C; Sanchez J; Soberón M; Bravo A Biochemistry; 2006 Aug; 45(34):10329-36. PubMed ID: 16922508 [TBL] [Abstract][Full Text] [Related]
38. Boundary region between coexisting lipid phases as initial binding sites for Escherichia coli alpha-hemolysin: a real-time study. Maté SM; Vázquez RF; Herlax VS; Daza Millone MA; Fanani ML; Maggio B; Vela ME; Bakás LS Biochim Biophys Acta; 2014 Jul; 1838(7):1832-41. PubMed ID: 24613790 [TBL] [Abstract][Full Text] [Related]
39. Reversible denaturation, self-aggregation, and membrane activity of Escherichia coli alpha-hemolysin, a protein stable in 6 M urea. Soloaga A; Ramírez JM; Goñi FM Biochemistry; 1998 May; 37(18):6387-93. PubMed ID: 9572855 [TBL] [Abstract][Full Text] [Related]
40. Location of tryptophan residues in free and membrane bound Escherichia coli alpha-hemolysin and their role on the lytic membrane properties. Verza G; Bakás L Biochim Biophys Acta; 2000 Mar; 1464(1):27-34. PubMed ID: 10704917 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]