These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 24102409)
1. Generation of bioartificial heart tissue by combining a three-dimensional gel-based cardiac construct with decellularized small intestinal submucosa. Vukadinovic-Nikolic Z; Andrée B; Dorfman SE; Pflaum M; Horvath T; Lux M; Venturini L; Bär A; Kensah G; Lara AR; Tudorache I; Cebotari S; Hilfiker-Kleiner D; Haverich A; Hilfiker A Tissue Eng Part A; 2014 Feb; 20(3-4):799-809. PubMed ID: 24102409 [TBL] [Abstract][Full Text] [Related]
2. Engineering a novel three-dimensional contractile myocardial patch with cell sheets and decellularised matrix. Hata H; Bär A; Dorfman S; Vukadinovic Z; Sawa Y; Haverich A; Hilfiker A Eur J Cardiothorac Surg; 2010 Oct; 38(4):450-5. PubMed ID: 20335044 [TBL] [Abstract][Full Text] [Related]
3. Successful re-endothelialization of a perfusable biological vascularized matrix (BioVaM) for the generation of 3D artificial cardiac tissue. Andrée B; Bela K; Horvath T; Lux M; Ramm R; Venturini L; Ciubotaru A; Zweigerdt R; Haverich A; Hilfiker A Basic Res Cardiol; 2014; 109(6):441. PubMed ID: 25231595 [TBL] [Abstract][Full Text] [Related]
4. Small intestinal submucosa segments as matrix for tissue engineering: review. Andrée B; Bär A; Haverich A; Hilfiker A Tissue Eng Part B Rev; 2013 Aug; 19(4):279-91. PubMed ID: 23216258 [TBL] [Abstract][Full Text] [Related]
5. In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation. Lux M; Andrée B; Horvath T; Nosko A; Manikowski D; Hilfiker-Kleiner D; Haverich A; Hilfiker A Acta Biomater; 2016 Jan; 30():177-187. PubMed ID: 26546973 [TBL] [Abstract][Full Text] [Related]
6. BioVaM in the rat model: a new approach of vascularized 3D tissue for esophageal replacement. Hofmann AD; Hilfiker A; Haverich A; Andree B; Kuebler J; Ure B Eur J Pediatr Surg; 2015 Apr; 25(2):181-8. PubMed ID: 24792863 [TBL] [Abstract][Full Text] [Related]
7. A comparative analysis of expanded polytetrafluoroethylene and small intestinal submucosa--implications for patch repair in ventral herniorrhaphy. Rauth TP; Poulose BK; Nanney LB; Holzman MD J Surg Res; 2007 Nov; 143(1):43-9. PubMed ID: 17950071 [TBL] [Abstract][Full Text] [Related]
8. Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Crapo PM; Wang Y Acta Biomater; 2010 Jun; 6(6):2091-6. PubMed ID: 19887120 [TBL] [Abstract][Full Text] [Related]
9. In vitro evaluation of the bioactive factors preserved in porcine small intestinal submucosa through cellular biological approaches. Yang B; Zhou L; Sun Z; Yang R; Chen Y; Dai Y J Biomed Mater Res A; 2010 Jun; 93(3):1100-9. PubMed ID: 19768788 [TBL] [Abstract][Full Text] [Related]
10. Differential efficacy of gels derived from small intestinal submucosa as an injectable biomaterial for myocardial infarct repair. Okada M; Payne TR; Oshima H; Momoi N; Tobita K; Huard J Biomaterials; 2010 Oct; 31(30):7678-83. PubMed ID: 20674011 [TBL] [Abstract][Full Text] [Related]
11. Functional evaluation of the grafted wall with porcine-derived small intestinal submucosa (SIS) to a stomach defect in rats. Ueno T; de la Fuente SG; Abdel-Wahab OI; Takahashi T; Gottfried M; Harris MB; Tatewaki M; Uemura K; Lawson DC; Mantyh CR; Pappas TN Surgery; 2007 Sep; 142(3):376-83. PubMed ID: 17723890 [TBL] [Abstract][Full Text] [Related]
12. Building a Total Bioartificial Heart: Harnessing Nature to Overcome the Current Hurdles. Taylor DA; Frazier OH; Elgalad A; Hochman-Mendez C; Sampaio LC Artif Organs; 2018 Oct; 42(10):970-982. PubMed ID: 30044011 [TBL] [Abstract][Full Text] [Related]
13. Distinct cell-to-fiber junctions are critical for the establishment of cardiotypical phenotype in a 3D bioartificial environment. Kofidis T; Balsam L; de Bruin J; Robbins RC Med Eng Phys; 2004 Mar; 26(2):157-63. PubMed ID: 15036183 [TBL] [Abstract][Full Text] [Related]
14. Cardiac tissue engineering in an in vivo vascularized chamber. Morritt AN; Bortolotto SK; Dilley RJ; Han X; Kompa AR; McCombe D; Wright CE; Itescu S; Angus JA; Morrison WA Circulation; 2007 Jan; 115(3):353-60. PubMed ID: 17200440 [TBL] [Abstract][Full Text] [Related]
15. The pro-angiogenic factor CCN1 enhances the re-endothelialization of biological vascularized matrices in vitro. Bär A; Dorfman SE; Fischer P; Hilfiker-Kleiner D; Cebotari S; Tudorache I; Suprunov M; Haverich A; Hilfiker A Cardiovasc Res; 2010 Mar; 85(4):806-13. PubMed ID: 19920130 [TBL] [Abstract][Full Text] [Related]
16. Study of biocompatibility of small intestinal submucosa (SIS) with Schwann cells in vitro. Su Y; Zeng BF; Zhang CQ; Zhang KG; Xie XT Brain Res; 2007 May; 1145():41-7. PubMed ID: 17367764 [TBL] [Abstract][Full Text] [Related]
17. Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Dahlmann J; Krause A; Möller L; Kensah G; Möwes M; Diekmann A; Martin U; Kirschning A; Gruh I; Dräger G Biomaterials; 2013 Jan; 34(4):940-51. PubMed ID: 23141898 [TBL] [Abstract][Full Text] [Related]
18. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Eitan Y; Sarig U; Dahan N; Machluf M Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649 [TBL] [Abstract][Full Text] [Related]
19. Morphologic evaluation of regenerated small bowel by small intestinal submucosa. Wang ZQ; Watanabe Y; Noda T; Yoshida A; Oyama T; Toki A J Pediatr Surg; 2005 Dec; 40(12):1898-902. PubMed ID: 16338314 [TBL] [Abstract][Full Text] [Related]
20. Transplantation of Isl1 Wang L; Meier EM; Tian S; Lei I; Liu L; Xian S; Lam MT; Wang Z Stem Cell Res Ther; 2017 Oct; 8(1):230. PubMed ID: 29037258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]