These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24102451)
1. A novel method for three-dimensional culture of central nervous system neurons. Puschmann TB; de Pablo Y; Zandén C; Liu J; Pekny M Tissue Eng Part C Methods; 2014 Jun; 20(6):485-92. PubMed ID: 24102451 [TBL] [Abstract][Full Text] [Related]
2. Suspended, Shrinkage-Free, Electrospun PLGA Nanofibrous Scaffold for Skin Tissue Engineering. Ru C; Wang F; Pang M; Sun L; Chen R; Sun Y ACS Appl Mater Interfaces; 2015 May; 7(20):10872-7. PubMed ID: 25941905 [TBL] [Abstract][Full Text] [Related]
3. Growth of primary hippocampal neuronal tissue on an aragonite crystalline biomatrix. Shany B; Vago R; Baranes D Tissue Eng; 2005; 11(3-4):585-96. PubMed ID: 15871670 [TBL] [Abstract][Full Text] [Related]
4. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. Wang J; Ye R; Wei Y; Wang H; Xu X; Zhang F; Qu J; Zuo B; Zhang H J Biomed Mater Res A; 2012 Mar; 100(3):632-45. PubMed ID: 22213384 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional functional human neuronal networks in uncompressed low-density electrospun fiber scaffolds. Jakobsson A; Ottosson M; Zalis MC; O'Carroll D; Johansson UE; Johansson F Nanomedicine; 2017 May; 13(4):1563-1573. PubMed ID: 28064005 [TBL] [Abstract][Full Text] [Related]
13. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207 [TBL] [Abstract][Full Text] [Related]
14. Micro and nano-scale in vitro 3D culture system for cardiac stem cells. Hosseinkhani H; Hosseinkhani M; Hattori S; Matsuoka R; Kawaguchi N J Biomed Mater Res A; 2010 Jul; 94(1):1-8. PubMed ID: 20014298 [TBL] [Abstract][Full Text] [Related]
15. Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Kim SH; Im SK; Oh SJ; Jeong S; Yoon ES; Lee CJ; Choi N; Hur EM Nat Commun; 2017 Feb; 8():14346. PubMed ID: 28146148 [TBL] [Abstract][Full Text] [Related]
16. Highly ordered large-scale neuronal networks of individual cells - toward single cell to 3D nanowire intracellular interfaces. Kwiat M; Elnathan R; Pevzner A; Peretz A; Barak B; Peretz H; Ducobni T; Stein D; Mittelman L; Ashery U; Patolsky F ACS Appl Mater Interfaces; 2012 Jul; 4(7):3542-9. PubMed ID: 22724437 [TBL] [Abstract][Full Text] [Related]
17. The three-dimensional nanofiber scaffold culture condition improves viability and function of islets. Zhao M; Song C; Zhang W; Hou Y; Huang R; Song Y; Xie W; Shi Y; Song C J Biomed Mater Res A; 2010 Sep; 94(3):667-72. PubMed ID: 20336763 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional bioprinting of rat embryonic neural cells. Lee W; Pinckney J; Lee V; Lee JH; Fischer K; Polio S; Park JK; Yoo SS Neuroreport; 2009 May; 20(8):798-803. PubMed ID: 19369905 [TBL] [Abstract][Full Text] [Related]
19. Nanofibrous scaffold-mediated REST knockdown to enhance neuronal differentiation of stem cells. Low WC; Rujitanaroj PO; Lee DK; Messersmith PB; Stanton LW; Goh E; Chew SY Biomaterials; 2013 May; 34(14):3581-90. PubMed ID: 23415645 [TBL] [Abstract][Full Text] [Related]
20. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]