BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24102451)

  • 1. A novel method for three-dimensional culture of central nervous system neurons.
    Puschmann TB; de Pablo Y; Zandén C; Liu J; Pekny M
    Tissue Eng Part C Methods; 2014 Jun; 20(6):485-92. PubMed ID: 24102451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suspended, Shrinkage-Free, Electrospun PLGA Nanofibrous Scaffold for Skin Tissue Engineering.
    Ru C; Wang F; Pang M; Sun L; Chen R; Sun Y
    ACS Appl Mater Interfaces; 2015 May; 7(20):10872-7. PubMed ID: 25941905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of primary hippocampal neuronal tissue on an aragonite crystalline biomatrix.
    Shany B; Vago R; Baranes D
    Tissue Eng; 2005; 11(3-4):585-96. PubMed ID: 15871670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells.
    Wang J; Ye R; Wei Y; Wang H; Xu X; Zhang F; Qu J; Zuo B; Zhang H
    J Biomed Mater Res A; 2012 Mar; 100(3):632-45. PubMed ID: 22213384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional functional human neuronal networks in uncompressed low-density electrospun fiber scaffolds.
    Jakobsson A; Ottosson M; Zalis MC; O'Carroll D; Johansson UE; Johansson F
    Nanomedicine; 2017 May; 13(4):1563-1573. PubMed ID: 28064005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inkjet printing Schwann cells and neuronal analogue NG108-15 cells.
    Tse C; Whiteley R; Yu T; Stringer J; MacNeil S; Haycock JW; Smith PJ
    Biofabrication; 2016 Mar; 8(1):015017. PubMed ID: 26930268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic engineered high cell density three-dimensional neural cultures.
    Cullen DK; Vukasinovic J; Glezer A; Laplaca MC
    J Neural Eng; 2007 Jun; 4(2):159-72. PubMed ID: 17409489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact self-wiring in cultured neural networks.
    Sorkin R; Gabay T; Blinder P; Baranes D; Ben-Jacob E; Hanein Y
    J Neural Eng; 2006 Jun; 3(2):95-101. PubMed ID: 16705265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic plasticity in micropatterned neuronal networks.
    Vogt AK; Wrobel G; Meyer W; Knoll W; Offenhäusser A
    Biomaterials; 2005 May; 26(15):2549-57. PubMed ID: 15585257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures.
    Nam Y; Branch DW; Wheeler BC
    Biosens Bioelectron; 2006 Dec; 22(5):589-97. PubMed ID: 16531038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds.
    Kabiri M; Soleimani M; Shabani I; Futrega K; Ghaemi N; Ahvaz HH; Elahi E; Doran MR
    Biotechnol Lett; 2012 Jul; 34(7):1357-65. PubMed ID: 22476548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofibers coated on acellular tissue-engineered bovine pericardium supports differentiation of mesenchymal stem cells into endothelial cells for tissue engineering.
    Mathapati S; Bishi DK; Venugopal JR; Cherian KM; Guhathakurta S; Ramakrishna S; Verma RS
    Nanomedicine (Lond); 2014 Apr; 9(5):623-34. PubMed ID: 24827842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.
    Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ
    Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro and nano-scale in vitro 3D culture system for cardiac stem cells.
    Hosseinkhani H; Hosseinkhani M; Hattori S; Matsuoka R; Kawaguchi N
    J Biomed Mater Res A; 2010 Jul; 94(1):1-8. PubMed ID: 20014298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network.
    Kim SH; Im SK; Oh SJ; Jeong S; Yoon ES; Lee CJ; Choi N; Hur EM
    Nat Commun; 2017 Feb; 8():14346. PubMed ID: 28146148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly ordered large-scale neuronal networks of individual cells - toward single cell to 3D nanowire intracellular interfaces.
    Kwiat M; Elnathan R; Pevzner A; Peretz A; Barak B; Peretz H; Ducobni T; Stein D; Mittelman L; Ashery U; Patolsky F
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3542-9. PubMed ID: 22724437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The three-dimensional nanofiber scaffold culture condition improves viability and function of islets.
    Zhao M; Song C; Zhang W; Hou Y; Huang R; Song Y; Xie W; Shi Y; Song C
    J Biomed Mater Res A; 2010 Sep; 94(3):667-72. PubMed ID: 20336763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional bioprinting of rat embryonic neural cells.
    Lee W; Pinckney J; Lee V; Lee JH; Fischer K; Polio S; Park JK; Yoo SS
    Neuroreport; 2009 May; 20(8):798-803. PubMed ID: 19369905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofibrous scaffold-mediated REST knockdown to enhance neuronal differentiation of stem cells.
    Low WC; Rujitanaroj PO; Lee DK; Messersmith PB; Stanton LW; Goh E; Chew SY
    Biomaterials; 2013 May; 34(14):3581-90. PubMed ID: 23415645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.