BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 24102531)

  • 1. Electronic and ligand properties of annelated normal and abnormal (mesoionic) N-heterocyclic carbenes: a theoretical study.
    Phukan AK; Guha AK; Sarmah S; Dewhurst RD
    J Org Chem; 2013 Nov; 78(21):11032-9. PubMed ID: 24102531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study on the effect of annelation and carbonylation on the electronic and ligand properties of N-heterocyclic silylenes and germylenes: carbene comparisons begin to break down.
    Guha AK; Phukan AK
    J Org Chem; 2014 May; 79(9):3830-7. PubMed ID: 24738711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the electronic and ligand properties of remote carbenes: a theoretical study.
    Borthakur B; Rahman T; Phukan AK
    J Org Chem; 2014 Nov; 79(22):10801-10. PubMed ID: 25340967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Annulated boron substituted N-heterocyclic carbenes: theoretical prediction of highly electrophilic carbenes.
    Bharadwaz P; Borthakur B; Phukan AK
    Dalton Trans; 2015 Nov; 44(42):18656-64. PubMed ID: 26455836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and Ligand Properties of Skeletally Substituted Cyclic (Alkyl)(Amino)Carbenes (CAACs) and Their Reactivity towards Small Molecule Activation: A Theoretical Study.
    Bharadwaz P; Chetia P; Phukan AK
    Chemistry; 2017 Jul; 23(41):9926-9936. PubMed ID: 28504835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-heterocyclic carbenes with inorganic backbones: electronic structures and ligand properties.
    Kausamo A; Tuononen HM; Krahulic KE; Roesler R
    Inorg Chem; 2008 Feb; 47(3):1145-54. PubMed ID: 18166046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and theoretical investigations on the high-electron donor character of pyrido-annelated N-heterocyclic carbenes.
    Nonnenmacher M; Buck DM; Kunz D
    Beilstein J Org Chem; 2016; 12():1884-1896. PubMed ID: 27829895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure trends in N-heterocyclic carbenes (NHCs) with varying number of nitrogen atoms and NHC-transition-metal bond properties.
    Bernhammer JC; Frison G; Huynh HV
    Chemistry; 2013 Sep; 19(38):12892-905. PubMed ID: 23955586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of substituents at the heteroatom on the structure and ligating properties of heterocyclic carbene, silylene, germylene and abnormal carbene: a theoretical study.
    Guha AK; Sarmah S; Phukan AK
    Dalton Trans; 2010 Aug; 39(31):7374-83. PubMed ID: 20607170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic and ligating properties of carbocyclic carbenes: A theoretical investigation.
    Bhagat S; Arfeen M; Das G; Patel N; Bharatam PV
    J Comput Chem; 2018 Dec; ():. PubMed ID: 30549074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic (Aryl)(Amido)Carbenes: NHCs with Triplet-like Reactivity.
    Sultane PR; Ahumada G; Janssen-Müller D; Bielawski CW
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16320-16325. PubMed ID: 31461555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in ligating abilities of the singlet and triplet states of normal, abnormal and remote N-heterocyclic carbenes depending on their aromaticities.
    Sevinçek R; Karabıyık H; Karabıyık H
    J Mol Model; 2013 Dec; 19(12):5327-41. PubMed ID: 24305725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the Bonding Properties of N-Heterocyclic Carbenes (NHCs): A Systematic Charge-Displacement Analysis.
    Gaggioli CA; Bistoni G; Ciancaleoni G; Tarantelli F; Belpassi L; Belanzoni P
    Chemistry; 2017 Jun; 23(31):7558-7569. PubMed ID: 28370714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating and trapping metalla-N-heterocyclic carbenes.
    Ruiz J; García L; Vivanco M; Berros Á; Van der Maelen JF
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4212-6. PubMed ID: 25655074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structural trends in divalent carbon compounds.
    Huynh HV; Frison G
    J Org Chem; 2013 Jan; 78(2):328-38. PubMed ID: 23253047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT prediction of multitopic N-heterocyclic carbenes using Clar's aromatic sextet theory.
    Suresh CH; Ajitha MJ
    J Org Chem; 2013 Apr; 78(8):3918-24. PubMed ID: 23461408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,3-Imidazole-Based Mesoionic Carbenes and Anionic Dicarbenes: Pushing the Limit of Classical N-Heterocyclic Carbenes.
    Ghadwal RS
    Angew Chem Int Ed Engl; 2023 Sep; 62(36):e202304665. PubMed ID: 37132480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Basicity Scales for N-Heterocyclic Carbenes in DMSO: Implications on the Stabilities of N-Heterocyclic Carbene and CO
    Wang Z; Xue XS; Fu Y; Ji P
    Chem Asian J; 2020 Jan; 15(1):169-181. PubMed ID: 31773893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,2-migration in N-phosphano functionalized N-heterocyclic carbenes.
    Kirilchuk AA; Yurchenko AA; Kostyuk AN; Rozhenko AB
    J Comput Chem; 2015 Jan; 36(1):42-8. PubMed ID: 25363134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1,2,4-Triazol-3-ylidenes with an N-2,4-dinitrophenyl substituent as strongly π-accepting N-heterocyclic carbenes.
    Sato T; Hirose Y; Yoshioka D; Shimojo T; Oi S
    Chemistry; 2013 Nov; 19(46):15710-8. PubMed ID: 24591248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.