These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24102541)

  • 1. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.
    Edison JR; Monson PA
    Langmuir; 2013 Nov; 29(45):13808-20. PubMed ID: 24102541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of capillary condensation in lattice gas models of confined fluids: a comparison of dynamic mean field theory with dynamic Monte Carlo simulations.
    Edison JR; Monson PA
    J Chem Phys; 2013 Jun; 138(23):234709. PubMed ID: 23802978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic mean field theory for lattice gas models of fluids confined in porous materials: higher order theory based on the Bethe-Peierls and path probability method approximations.
    Edison JR; Monson PA
    J Chem Phys; 2014 Jul; 141(2):024706. PubMed ID: 25028037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model.
    Monson PA
    Langmuir; 2008 Nov; 24(21):12295-302. PubMed ID: 18834164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic mean field theory of condensation and evaporation processes for fluids in porous materials: application to partial drying and drying.
    Edison JR; Monson PA
    Faraday Discuss; 2010; 146():167-84; discussion 195-215, 395-403. PubMed ID: 21043421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation and short time dynamics of bulk liquids and fluids confined in spherical cavities and slit pores.
    Krishnan SH; Ayappa KG
    J Phys Chem B; 2005 Dec; 109(49):23237-49. PubMed ID: 16375288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layering, condensation, and evaporation of short chains in narrow slit pores.
    Li Z; Cao D; Wu J
    J Chem Phys; 2005 Jun; 122(22):224701. PubMed ID: 15974697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Phys Chem B; 2009 Oct; 113(42):13874-81. PubMed ID: 19627116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase behavior of ionic fluids in slitlike pores: a density functional approach for the restricted primitive model.
    Pizio O; Patrykiejew A; Sokołowski S
    J Chem Phys; 2004 Dec; 121(23):11957-64. PubMed ID: 15634158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation.
    Mi J; Tang Y; Zhong C; Li YG
    J Chem Phys; 2006 Apr; 124(14):144709. PubMed ID: 16626233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase equilibria and plate-fluid interfacial tensions for associating hard sphere fluids confined in slit pores.
    Fu D; Li XS
    J Chem Phys; 2006 Aug; 125(8):084716. PubMed ID: 16965048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption Hysteresis in Porous Solids.
    Donohue MD; Aranovich GL
    J Colloid Interface Sci; 1998 Sep; 205(1):121-30. PubMed ID: 9710505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavitation in metastable liquid nitrogen confined to nanoscale pores.
    Rasmussen CJ; Vishnyakov A; Thommes M; Smarsly BM; Kleitz F; Neimark AV
    Langmuir; 2010 Jun; 26(12):10147-57. PubMed ID: 20210340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Condensation/evaporation transition of water in spherical pores in equilibrium with saturated bulk water.
    Brovchenko I; Oleinikova A
    J Phys Chem B; 2010 Dec; 114(49):16494-502. PubMed ID: 21080661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of fluid mixtures in nanospaces.
    Marconi UM; Melchionna S
    J Chem Phys; 2011 Feb; 134(6):064118. PubMed ID: 21322672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of phase equilibrium and vapor adsorption on carbon black based on a combination of a lattice theory and equation of state.
    Ustinov EA; Do DD
    J Colloid Interface Sci; 2002 Sep; 253(2):247-56. PubMed ID: 16290856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores.
    Lísal M; Brennan JK; Smith WR
    J Chem Phys; 2006 Feb; 124(6):64712. PubMed ID: 16483234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary condensation of a binary mixture in slit-like pores.
    Bucior K; Patrykiejew A; Pizio O; Sokołowski S
    J Colloid Interface Sci; 2003 Mar; 259(2):209-22. PubMed ID: 16256499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does water condense in carbon pores?
    Liu JC; Monson PA
    Langmuir; 2005 Oct; 21(22):10219-25. PubMed ID: 16229548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.