BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24102621)

  • 21. Histone acetylation in astrocytes suppresses GFAP and stimulates a reorganization of the intermediate filament network.
    Kanski R; Sneeboer MA; van Bodegraven EJ; Sluijs JA; Kropff W; Vermunt MW; Creyghton MP; De Filippis L; Vescovi A; Aronica E; van Tijn P; van Strien ME; Hol EM
    J Cell Sci; 2014 Oct; 127(Pt 20):4368-80. PubMed ID: 25128567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition.
    Tang G; Perng MD; Wilk S; Quinlan R; Goldman JE
    J Biol Chem; 2010 Apr; 285(14):10527-37. PubMed ID: 20110364
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.
    Pekny T; Faiz M; Wilhelmsson U; Curtis MA; Matej R; Skalli O; Pekny M
    APMIS; 2014 Jan; 122(1):76-80. PubMed ID: 23594359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Calpain and Caspase-6-Generated Glial Fibrillary Acidic Protein Breakdown Products Following Traumatic Brain Injury and Astroglial Cell Injury.
    Yang Z; Arja RD; Zhu T; Sarkis GA; Patterson RL; Romo P; Rathore DS; Moghieb A; Abbatiello S; Robertson CS; Haskins WE; Kobeissy F; Wang KKW
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012232
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation.
    Quinlan RA; Moir RD; Stewart M
    J Cell Sci; 1989 May; 93 ( Pt 1)():71-83. PubMed ID: 2693466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mild functional effects of a novel GFAP mutant allele identified in a familial case of adult-onset Alexander disease.
    Bachetti T; Caroli F; Bocca P; Prigione I; Balbi P; Biancheri R; Filocamo M; Mariotti C; Pareyson D; Ravazzolo R; Ceccherini I
    Eur J Hum Genet; 2008 Apr; 16(4):462-70. PubMed ID: 18197187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease.
    Hagemann TL; Boelens WC; Wawrousek EF; Messing A
    Hum Mol Genet; 2009 Apr; 18(7):1190-9. PubMed ID: 19129171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pexidartinib treatment in Alexander disease model mice reduces macrophage numbers and increases glial fibrillary acidic protein levels, yet has minimal impact on other disease phenotypes.
    Boyd MM; Litscher SJ; Seitz LL; Messing A; Hagemann TL; Collier LS
    J Neuroinflammation; 2021 Mar; 18(1):67. PubMed ID: 33685480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease.
    Sosunov AA; McKhann GM; Goldman JE
    Acta Neuropathol Commun; 2017 Mar; 5(1):27. PubMed ID: 28359321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP.
    Lin NH; Huang YS; Opal P; Goldman RD; Messing A; Perng MD
    Mol Biol Cell; 2016 Dec; 27(25):3980-3990. PubMed ID: 27798231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain.
    Mouser PE; Head E; Ha KH; Rohn TT
    Am J Pathol; 2006 Mar; 168(3):936-46. PubMed ID: 16507909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alexander disease: putative mechanisms of an astrocytic encephalopathy.
    Mignot C; Boespflug-Tanguy O; Gelot A; Dautigny A; Pham-Dinh D; Rodriguez D
    Cell Mol Life Sci; 2004 Feb; 61(3):369-85. PubMed ID: 14770299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes.
    Jones JR; Kong L; Hanna MG; Hoffman B; Krencik R; Bradley R; Hagemann T; Choi J; Doers M; Dubovis M; Sherafat MA; Bhattacharyya A; Kendziorski C; Audhya A; Messing A; Zhang SC
    Cell Rep; 2018 Oct; 25(4):947-958.e4. PubMed ID: 30355500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease.
    Li L; Tian E; Chen X; Chao J; Klein J; Qu Q; Sun G; Sun G; Huang Y; Warden CD; Ye P; Feng L; Li X; Cui Q; Sultan A; Douvaras P; Fossati V; Sanjana NE; Riggs AD; Shi Y
    Cell Stem Cell; 2018 Aug; 23(2):239-251.e6. PubMed ID: 30075130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease.
    Hagemann TL; Powers B; Mazur C; Kim A; Wheeler S; Hung G; Swayze E; Messing A
    Ann Neurol; 2018 Jan; 83(1):27-39. PubMed ID: 29226998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP.
    Lin NH; Messing A; Perng MD
    PLoS One; 2017; 12(7):e0180694. PubMed ID: 28700643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual transgenic reporter mice as a tool for monitoring expression of glial fibrillary acidic protein.
    Cho W; Hagemann TL; Johnson DA; Johnson JA; Messing A
    J Neurochem; 2009 Jul; 110(1):343-51. PubMed ID: 19457099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening for GFAP rearrangements in a cohort of Alexander disease and undetermined leukoencephalopathy patients.
    Ferreira MC; Dorboz I; Rodriguez D; Boespflug Tanguy O
    Eur J Med Genet; 2015 Sep; 58(9):466-70. PubMed ID: 26208460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease.
    Hagemann TL; Paylor R; Messing A
    J Neurosci; 2013 Nov; 33(47):18698-706. PubMed ID: 24259590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.