BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 24102657)

  • 1. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation.
    Zhang N; Zhang HJ; Zhao B; Sun QQ; Cao YY; Li R; Wu XX; Weeda S; Li L; Ren S; Reiter RJ; Guo YD
    J Pineal Res; 2014 Jan; 56(1):39-50. PubMed ID: 24102657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of cucumber seedling roots subjected to salt stress.
    Du CX; Fan HF; Guo SR; Tezuka T; Li J
    Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network.
    Zhao W; Yang X; Yu H; Jiang W; Sun N; Liu X; Liu X; Zhang X; Wang Y; Gu X
    Plant Cell Physiol; 2015 Mar; 56(3):455-67. PubMed ID: 25432971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.).
    Zhang N; Zhao B; Zhang HJ; Weeda S; Yang C; Yang ZC; Ren S; Guo YD
    J Pineal Res; 2013 Jan; 54(1):15-23. PubMed ID: 22747917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation.
    Xu X; Chen M; Ji J; Xu Q; Qi X; Chen X
    BMC Plant Biol; 2017 Jul; 17(1):129. PubMed ID: 28747176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative Analyses of Nontargeted Volatile Profiling and Transcriptome Data Provide Molecular Insight into VOC Diversity in Cucumber Plants (Cucumis sativus).
    Wei G; Tian P; Zhang F; Qin H; Miao H; Chen Q; Hu Z; Cao L; Wang M; Gu X; Huang S; Chen M; Wang G
    Plant Physiol; 2016 Sep; 172(1):603-18. PubMed ID: 27457123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.).
    Li J; Wu Z; Cui L; Zhang T; Guo Q; Xu J; Jia L; Lou Q; Huang S; Li Z; Chen J
    Plant Cell Physiol; 2014 Jul; 55(7):1325-42. PubMed ID: 24733865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures.
    Bai L; Deng H; Zhang X; Yu X; Li Y
    PLoS One; 2016; 11(5):e0156188. PubMed ID: 27213554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation.
    Li MY; Cao ZY; Shen WB; Cui J
    Gene; 2011 Oct; 486(1-2):47-55. PubMed ID: 21784139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.
    de Zélicourt A; Diet A; Marion J; Laffont C; Ariel F; Moison M; Zahaf O; Crespi M; Gruber V; Frugier F
    Plant J; 2012 Apr; 70(2):220-30. PubMed ID: 22098255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential accumulation of the mRNA of the auxin-repressed gene CsGRP1 and the auxin-induced peg formation during gravimorphogenesis of cucumber seedlings.
    Shimizu M; Suzuki K; Miyazawa Y; Fujii N; Takahashi H
    Planta; 2006 Dec; 225(1):13-22. PubMed ID: 16773375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small RNA sequencing identifies cucumber miRNA roles in waterlogging-triggered adventitious root primordia formation.
    Xu X; Wang K; Pan J; Chen X
    Mol Biol Rep; 2019 Dec; 46(6):6381-6389. PubMed ID: 31538299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of the bZIP transcription factors in cucumber.
    Baloglu MC; Eldem V; Hajyzadeh M; Unver T
    PLoS One; 2014; 9(4):e96014. PubMed ID: 24760072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of vacuolar proton pumps in cucumber roots under salt stress.
    Kabała K; Kłobus G
    J Plant Physiol; 2008 Nov; 165(17):1830-7. PubMed ID: 18342986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to Lead (Pb) stress with next generation sequencing.
    Wang Y; Xu L; Chen Y; Shen H; Gong Y; Limera C; Liu L
    PLoS One; 2013; 8(6):e66539. PubMed ID: 23840502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Analysis of Cucumber Gibberellin Oxidase Family Genes and Functional Characterization of
    Sun H; Pang B; Yan J; Wang T; Wang L; Chen C; Li Q; Ren Z
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30322023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the alfalfa root transcriptome in response to salinity stress.
    Postnikova OA; Shao J; Nemchinov LG
    Plant Cell Physiol; 2013 Jul; 54(7):1041-55. PubMed ID: 23592587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in Gossypium aridum under salt stress.
    Xu P; Liu Z; Fan X; Gao J; Zhang X; Zhang X; Shen X
    Gene; 2013 Aug; 525(1):26-34. PubMed ID: 23651590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings.
    Wang BL; Shi L; Li YX; Zhang WH
    Planta; 2010 May; 231(6):1301-9. PubMed ID: 20224946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress.
    Tan X; Long W; Zeng L; Ding X; Cheng Y; Zhang X; Zou X
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31661818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.