These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24103070)

  • 1. Time-scale separation--Michaelis and Menten's old idea, still bearing fruit.
    Gunawardena J
    FEBS J; 2014 Jan; 281(2):473-88. PubMed ID: 24103070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A linear framework for time-scale separation in nonlinear biochemical systems.
    Gunawardena J
    PLoS One; 2012; 7(5):e36321. PubMed ID: 22606254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.
    Tummler K; Lubitz T; Schelker M; Klipp E
    FEBS J; 2014 Jan; 281(2):549-71. PubMed ID: 24034816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some lessons about models from Michaelis and Menten.
    Gunawardena J
    Mol Biol Cell; 2012 Feb; 23(4):517-9. PubMed ID: 22337858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects.
    Noor E; Flamholz A; Liebermeister W; Bar-Even A; Milo R
    FEBS Lett; 2013 Sep; 587(17):2772-7. PubMed ID: 23892083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERK as a model for systems biology of enzyme kinetics in cells.
    Futran AS; Link AJ; Seger R; Shvartsman SY
    Curr Biol; 2013 Nov; 23(21):R972-9. PubMed ID: 24200329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Michaelis-Menten at 100 and allosterism at 50: driving molecular motors in a hailstorm with noisy ATPase engines and allosteric transmission.
    Chowdhury D
    FEBS J; 2014 Jan; 281(2):601-11. PubMed ID: 24267408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question.
    Schnell S
    FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Michaelis-Menten Reaction at Low Substrate Concentrations: Pseudo-First-Order Kinetics and Conditions for Timescale Separation.
    Eilertsen J; Schnell S; Walcher S
    Bull Math Biol; 2024 May; 86(6):68. PubMed ID: 38703247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The total quasi-steady-state approximation is valid for reversible enzyme kinetics.
    Tzafriri AR; Edelman ER
    J Theor Biol; 2004 Feb; 226(3):303-13. PubMed ID: 14643644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical steady-state enzyme kinetics.
    Lorsch JR
    Methods Enzymol; 2014; 536():3-15. PubMed ID: 24423262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A guide to the Michaelis-Menten equation: steady state and beyond.
    Srinivasan B
    FEBS J; 2022 Oct; 289(20):6086-6098. PubMed ID: 34270860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics.
    Palsson BO; Lightfoot EN
    J Theor Biol; 1984 Nov; 111(2):273-302. PubMed ID: 6513572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphical reduction of reaction networks by linear elimination of species.
    Sáez M; Wiuf C; Feliu E
    J Math Biol; 2017 Jan; 74(1-2):195-237. PubMed ID: 27221101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expressions for the fractional modification in different monocyclic enzyme cascade systems: analysis of their validity tested by numerical integration.
    Varón R; Valero E; Molina-Alarcón M; García-Cánovas F; García-Molina F; Fuentes ME; García-Moreno M
    Bull Math Biol; 2006 Oct; 68(7):1461-93. PubMed ID: 16868854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding allosteric and cooperative interactions in enzymes.
    Cornish-Bowden A
    FEBS J; 2014 Jan; 281(2):621-32. PubMed ID: 23910900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-steady state assumptions for non-isolated enzyme-catalysed reactions.
    Stoleriu I; Davidson FA; Liu JL
    J Math Biol; 2004 Jan; 48(1):82-104. PubMed ID: 14685773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maini's many contributions to mathematical enzyme kinetics: A review.
    Burke MA
    J Theor Biol; 2019 Nov; 481():24-27. PubMed ID: 30553723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.