BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24103257)

  • 21. Source identification of water-soluble organic aerosols at a roadway site using a positive matrix factorization analysis.
    Park S; Cho SY; Bae MS
    Sci Total Environ; 2015 Nov; 533():410-21. PubMed ID: 26184904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of brown carbon from black carbon for IMPROVE and Chemical Speciation Network PM
    Chow JC; Watson JG; Green MC; Wang X; Chen LA; Trimble DL; Cropper PM; Kohl SD; Gronstal SB
    J Air Waste Manag Assoc; 2018 May; 68(5):494-510. PubMed ID: 29341854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical and thermal characteristics of carbonaceous aerosols measured at an urban site in Gwangju, Korea, in the winter of 2011.
    Batmunkh T; Lee K; Kim YJ; Bae MS; Maskey S; Park K
    J Air Waste Manag Assoc; 2016 Feb; 66(2):151-63. PubMed ID: 26452763
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China.
    Cao F; Zhang SC; Kawamura K; Zhang YL
    Sci Total Environ; 2016 Dec; 572():1244-1251. PubMed ID: 26412422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An automated method for thermal-optical separation of aerosol organic/elemental carbon for
    Yao P; Ni H; Paul D; Masalaite A; Huang RJ; Meijer HAJ; Dusek U
    Sci Total Environ; 2022 Jan; 804():150031. PubMed ID: 34509852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Source apportionment of organic compounds in Berlin using positive matrix factorization - assessing the impact of biogenic aerosol and biomass burning on urban particulate matter.
    Wagener S; Langner M; Hansen U; Moriske HJ; Endlicher WR
    Sci Total Environ; 2012 Oct; 435-436():392-401. PubMed ID: 22871466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Comparison of Monitoring Methods of Organic Carbon and Element Carbon in Atmospheric Fine Particles].
    Pang B; Ji DS; Liu ZR; Zhu B; Wang YS
    Huan Jing Ke Xue; 2016 Apr; 37(4):1230-9. PubMed ID: 27548941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of elemental and total carbon in combustion particulate matter using thermal-oxidative analysis.
    Klingshirn CD; West ZJ; DeWitt MJ; Higgins A; Graham J; Corporan E
    J Air Waste Manag Assoc; 2019 Aug; 69(8):1003-1013. PubMed ID: 31184549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal trends in atmospheric PM₂.₅, PM₁₀, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain.
    Ram K; Sarin MM; Tripathi SN
    Environ Sci Technol; 2012 Jan; 46(2):686-95. PubMed ID: 22192056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integration of field observation and air quality modeling to characterize Beijing aerosol in different seasons.
    Liu JM; Wang PF; Zhang HL; Du ZY; Zheng B; Yu QQ; Zheng GJ; Ma YL; Zheng M; Cheng Y; Zhang Q; He KB
    Chemosphere; 2020 Mar; 242():125195. PubMed ID: 31683164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sources of primary and secondary organic aerosol and their diurnal variations.
    Zheng M; Zhao X; Cheng Y; Yan C; Shi W; Zhang X; Weber RJ; Schauer JJ; Wang X; Edgerton ES
    J Hazard Mater; 2014 Jan; 264():536-44. PubMed ID: 24262212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols.
    Chow JC; Watson JG; Chen LW; Arnott WP; Moosmüller H; Fung K
    Environ Sci Technol; 2004 Aug; 38(16):4414-22. PubMed ID: 15382872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-resolved measurements of PM2.5 carbonaceous aerosols at Gosan, Korea.
    Batmunkh T; Kim YJ; Lee KY; Cayetano MG; Jung JS; Kim SY; Kim KC; Lee SJ; Kim JS; Chang LS; An JY
    J Air Waste Manag Assoc; 2011 Nov; 61(11):1174-82. PubMed ID: 22168101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indoor/outdoor relationships for PM2.5 and associated carbonaceous pollutants at residential homes in Hong Kong - case study.
    Cao JJ; Lee SC; Chow JC; Cheng Y; Ho KF; Fung K; Liu SX; Watson JG
    Indoor Air; 2005 Jun; 15(3):197-204. PubMed ID: 15865619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The characteristics of carbonaceous aerosol in Beijing during a season of transition.
    Liu JM; Du ZY; Gordon M; Liang LL; Ma YL; Zheng M; Cheng Y; He KB
    Chemosphere; 2018 Dec; 212():1010-1019. PubMed ID: 30286530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of levoglucosan and radiocarbon for source apportionment of PM(2.5) carbonaceous aerosols at a background site in East China.
    Liu D; Li J; Zhang Y; Xu Y; Liu X; Ding P; Shen C; Chen Y; Tian C; Zhang G
    Environ Sci Technol; 2013 Sep; 47(18):10454-61. PubMed ID: 23957240
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Yao P; Huang RJ; Ni H; Kairys N; Yang L; Meijer HAJ; Dusek U
    Sci Total Environ; 2022 Mar; 810():151284. PubMed ID: 34740647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic carbon and elemental carbon associated with PM(10) in Beijing during spring time.
    Zhang R; Ho KF; Cao J; Han Z; Zhang M; Cheng Y; Lee SC
    J Hazard Mater; 2009 Dec; 172(2-3):970-7. PubMed ID: 19733974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.
    Rajput P; Sarin MM; Sharma D; Singh D
    Environ Sci Process Impacts; 2014; 16(10):2371-9. PubMed ID: 25124269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerosol chemical composition over Istanbul.
    Theodosi C; Im U; Bougiatioti A; Zarmpas P; Yenigun O; Mihalopoulos N
    Sci Total Environ; 2010 May; 408(12):2482-91. PubMed ID: 20304466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.