These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 24103298)

  • 1. MicroRNAs with analogous target complementarities perform with highly variable efficacies in Arabidopsis.
    Deveson I; Li J; Millar AA
    FEBS Lett; 2013 Nov; 587(22):3703-8. PubMed ID: 24103298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants beyond both complementarity and cleavage govern microR159 efficacy in Arabidopsis.
    Li J; Reichel M; Millar AA
    PLoS Genet; 2014 Mar; 10(3):e1004232. PubMed ID: 24626050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitous miR159 repression of MYB33/65 in Arabidopsis rosettes is robust and is not perturbed by a wide range of stresses.
    Li Y; Alonso-Peral M; Wong G; Wang MB; Millar AA
    BMC Plant Biol; 2016 Aug; 16(1):179. PubMed ID: 27542984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target RNA Secondary Structure Is a Major Determinant of miR159 Efficacy.
    Zheng Z; Reichel M; Deveson I; Wong G; Li J; Millar AA
    Plant Physiol; 2017 Jul; 174(3):1764-1778. PubMed ID: 28515145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA159 can act as a switch or tuning microRNA independently of its abundance in Arabidopsis.
    Alonso-Peral MM; Sun C; Millar AA
    PLoS One; 2012; 7(4):e34751. PubMed ID: 22511963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319.
    Palatnik JF; Wollmann H; Schommer C; Schwab R; Boisbouvier J; Rodriguez R; Warthmann N; Allen E; Dezulian T; Huson D; Carrington JC; Weigel D
    Dev Cell; 2007 Jul; 13(1):115-25. PubMed ID: 17609114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101.
    Xue T; Liu Z; Dai X; Xiang F
    Plant Sci; 2017 Sep; 262():182-189. PubMed ID: 28716415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants.
    Ai T; Zhang L; Gao Z; Zhu CX; Guo X
    Plant Biol (Stuttg); 2011 Mar; 13(2):304-16. PubMed ID: 21309977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repression of miR156 by miR159 Regulates the Timing of the Juvenile-to-Adult Transition in Arabidopsis.
    Guo C; Xu Y; Shi M; Lai Y; Wu X; Wang H; Zhu Z; Poethig RS; Wu G
    Plant Cell; 2017 Jun; 29(6):1293-1304. PubMed ID: 28536099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana.
    Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB
    Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family.
    Allen RS; Li J; Stahle MI; Dubroué A; Gubler F; Millar AA
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16371-6. PubMed ID: 17916625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics reveals origin of MIR159A-MIR159B paralogy, and complexities of PTGS interaction between miR159 and target GA-MYBs in Brassicaceae.
    Anand S; Lal M; Das S
    Mol Genet Genomics; 2019 Jun; 294(3):693-714. PubMed ID: 30840147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana.
    Eamens AL; McHale M; Waterhouse PM
    Methods Mol Biol; 2014; 1062():211-24. PubMed ID: 24057368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.
    Yang X; Zhang H; Li L
    Plant J; 2012 May; 70(3):421-31. PubMed ID: 22247970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis.
    Zhao Y; Wang S; Wu W; Li L; Jiang T; Zheng B
    Nat Commun; 2018 Nov; 9(1):5011. PubMed ID: 30479343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis.
    Zhang H; Li L
    Plant J; 2013 Apr; 74(1):98-109. PubMed ID: 23289771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piecing the puzzle together: genetic requirements for miRNA biogenesis in Arabidopsis thaliana.
    Xie Z
    Methods Mol Biol; 2010; 592():1-17. PubMed ID: 19802585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-gene silencing in Arabidopsis: a collection of artificial microRNAs targeting groups of paralogs encoding transcription factors.
    Jover-Gil S; Paz-Ares J; Micol JL; Ponce MR
    Plant J; 2014 Oct; 80(1):149-60. PubMed ID: 25040904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis.
    Alonso-Peral MM; Li J; Li Y; Allen RS; Schnippenkoetter W; Ohms S; White RG; Millar AA
    Plant Physiol; 2010 Oct; 154(2):757-71. PubMed ID: 20699403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial microRNAs (amiRNAs) engineering - On how microRNA-based silencing methods have affected current plant silencing research.
    Sablok G; Pérez-Quintero AL; Hassan M; Tatarinova TV; López C
    Biochem Biophys Res Commun; 2011 Mar; 406(3):315-9. PubMed ID: 21329663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.