These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24103929)

  • 1. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.
    Wang XH; Yin WY; Chen ZZ
    Opt Express; 2013 Sep; 21(18):20565-76. PubMed ID: 24103929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auxiliary differential equation (ADE) method based complying-divergence implicit FDTD method for simulating the general dispersive anisotropic material.
    Xie G; Hou G; Feng N; Song K; Fang M; Li Y; Wu X; Huang Z
    Opt Express; 2023 May; 31(11):18468-18486. PubMed ID: 37381557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconditionally stable FDTD algorithm for 3-D electromagnetic simulation of nonlinear media.
    Moradi M; Pourangha SM; Nayyeri V; Soleimani M; Ramahi OM
    Opt Express; 2019 May; 27(10):15018-15031. PubMed ID: 31163941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.
    Kim EK; Ha SG; Lee J; Park YB; Jung KY
    Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media.
    Singh G; Ravi K; Wang Q; Ho ST
    Opt Lett; 2012 Jun; 37(12):2361-3. PubMed ID: 22739908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation pressure of active dispersive chiral slabs.
    Wang M; Li H; Gao D; Gao L; Xu J; Qiu CW
    Opt Express; 2015 Jun; 23(13):16546-53. PubMed ID: 26191666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method.
    Singh G; Tan EL; Chen ZN
    Opt Lett; 2011 Apr; 36(8):1494-6. PubMed ID: 21499401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
    Zhao S
    Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of pressure waves in the cochlea induced by a microwave pulse.
    Yitzhak NM; Ruppin R; Hareuveny R
    Bioelectromagnetics; 2014 Oct; 35(7):491-6. PubMed ID: 25099875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of the electromagnetic field and level populations in a waveguide amplifier: a multi-scale time problem.
    Fafin A; Cardin J; Dufour C; Gourbilleau F
    Opt Express; 2013 Oct; 21(20):24171-84. PubMed ID: 24104327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave propagation in media having negative permittivity and permeability.
    Ziolkowski RW; Heyman E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056625. PubMed ID: 11736134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.
    Heh DY; Tan EL
    Biomed Opt Express; 2011 Apr; 2(5):1169-83. PubMed ID: 21559129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-field: a finite-difference time-dependent method for simulation of electrodynamics on small scales.
    Coomar A; Arntsen C; Lopata KA; Pistinner S; Neuhauser D
    J Chem Phys; 2011 Aug; 135(8):084121. PubMed ID: 21895173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method.
    Dufour C; Cardin J; Debieu O; Fafin A; Gourbilleau F
    Nanoscale Res Lett; 2011 Apr; 6(1):278. PubMed ID: 21711829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast alternating direction implicit algorithm for geometric flow equations in biomolecular surface generation.
    Tian W; Zhao S
    Int J Numer Method Biomed Eng; 2014 Apr; 30(4):490-516. PubMed ID: 24574191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic simulation of quantum well structures.
    Shi S; Jin G; Prather DW
    Opt Express; 2006 Mar; 14(6):2459-72. PubMed ID: 19503585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite difference time domain (FDTD) method for modeling the effect of switched gradients on the human body in MRI.
    Zhao H; Crozier S; Liu F
    Magn Reson Med; 2002 Dec; 48(6):1037-42. PubMed ID: 12465114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.