These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24103941)

  • 1. Deep sub-wavelength imaging lithography by a reflective plasmonic slab.
    Wang C; Gao P; Zhao Z; Yao N; Wang Y; Liu L; Liu K; Luo X
    Opt Express; 2013 Sep; 21(18):20683-91. PubMed ID: 24103941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography.
    Luo J; Zeng B; Wang C; Gao P; Liu K; Pu M; Jin J; Zhao Z; Li X; Yu H; Luo X
    Nanoscale; 2015 Nov; 7(44):18805-12. PubMed ID: 26507847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Structures, Materials and Lenses for Optical Lithography beyond the Diffraction Limit: A Review.
    Wang C; Zhang W; Zhao Z; Wang Y; Gao P; Luo Y; Luo X
    Micromachines (Basel); 2016 Jul; 7(7):. PubMed ID: 30404291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination.
    Zhao Z; Luo Y; Zhang W; Wang C; Gao P; Wang Y; Pu M; Yao N; Zhao C; Luo X
    Sci Rep; 2015 Oct; 5():15320. PubMed ID: 26477856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of the plasmonic slab lens for improving direct-write nano lithography.
    Peng R; Lin J; Meng Y; Feng S; Lin T; Gao K; Gan Y; Zhao Q; Zhou M
    Opt Express; 2024 Jan; 32(3):4189-4200. PubMed ID: 38297625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods.
    Zhao Z; Luo Y; Yao N; Zhang W; Wang C; Gao P; Zhao C; Pu M; Luo X
    Opt Express; 2016 Nov; 24(24):27115-27126. PubMed ID: 27906286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient-based inverse extreme ultraviolet lithography.
    Ma X; Wang J; Chen X; Li Y; Arce GR
    Appl Opt; 2015 Aug; 54(24):7284-300. PubMed ID: 26368764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large area and deep sub-wavelength interference lithography employing odd surface plasmon modes.
    Liu L; Luo Y; Zhao Z; Zhang W; Gao G; Zeng B; Wang C; Luo X
    Sci Rep; 2016 Jul; 6():30450. PubMed ID: 27466010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPPs coupling induced interference in metal/dielectric multilayer waveguides and its application for plasmonic lithography.
    Zhu P; Shi H; Guo LJ
    Opt Express; 2012 May; 20(11):12521-9. PubMed ID: 22714240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Plasmonic Parameters on 7-nm Patterning in Plasmonic Computational Lithography.
    Kim SK
    J Nanosci Nanotechnol; 2018 Oct; 18(10):7124-7127. PubMed ID: 29954545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic direct-writing lithography via high numerical aperture objectives.
    Jiang Z; He W; Chen J; Jiang K; Li S; Wang L
    Opt Lett; 2023 Aug; 48(15):4153-4156. PubMed ID: 37527141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revisiting Newton's rings with a plasmonic optical flat for high-accuracy surface inspection.
    Zheng Y; Bian J; Wang XL; Liu JX; Feng P; Ge HX; Martin OJF; Zhang WH
    Light Sci Appl; 2016 Oct; 5(10):e16156. PubMed ID: 30167123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance enhancements to absorbance-modulation optical lithography. II. Plasmonic superlenses.
    Foulkes JE; Blaikie RJ
    J Opt Soc Am A Opt Image Sci Vis; 2011 Nov; 28(11):2218-25. PubMed ID: 22048288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on forbidden pitch in plasmonic lithography: taking 365 nm wavelength thin silver film-based superlens imaging lithography as an example.
    Ding H; Liu L; Dong L; Han D; Fan T; Zhang L; Wei Y
    Opt Express; 2022 Sep; 30(19):33869-33885. PubMed ID: 36242413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size.
    Gan Z; Cao Y; Evans RA; Gu M
    Nat Commun; 2013; 4():2061. PubMed ID: 23784312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maskless plasmonic lithography at 22 nm resolution.
    Pan L; Park Y; Xiong Y; Ulin-Avila E; Wang Y; Zeng L; Xiong S; Rho J; Sun C; Bogy DB; Zhang X
    Sci Rep; 2011; 1():175. PubMed ID: 22355690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography.
    Verschuuren MA; Gerlach P; van Sprang HA; Polman A
    Nanotechnology; 2011 Dec; 22(50):505201. PubMed ID: 22107885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.
    Li WD; Chou SY
    Opt Express; 2010 Jan; 18(2):931-7. PubMed ID: 20173915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance enhancements to absorbance-modulation optical lithography. I. Plasmonic reflector layers.
    Foulkes JE; Blaikie RJ
    J Opt Soc Am A Opt Image Sci Vis; 2011 Nov; 28(11):2209-17. PubMed ID: 22048287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.