These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24104001)

  • 1. Reverse design of a bull's eye structure based on the plasmonic far-field pattern.
    Yamada A; Terakawa M
    Opt Express; 2013 Sep; 21(18):21273-84. PubMed ID: 24104001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse design of a bull's eye structure for oblique incidence and wider angular transmission efficiency.
    Yamada A; Terakawa M
    Appl Opt; 2015 Apr; 54(11):3517-22. PubMed ID: 25967346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high throughput supra-wavelength plasmonic bull's eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet.
    Arabi HE; Joe HE; Nazari T; Min BK; Oh K
    Opt Express; 2013 Nov; 21(23):28083-94. PubMed ID: 24514322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong polarization dependence in the optical transmission through a bull's eye with an elliptical sub-wavelength aperture.
    Pournoury M; Arabi HE; Oh K
    Opt Express; 2012 Nov; 20(24):26798-805. PubMed ID: 23187534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Optical Transmission through a Hybrid Bull's Eye Structure Integrated with a Silicon Hemisphere.
    Liu Y; Fang J; Lin Y; Shi S; Di C; Zhang S; Sun M; Shi Y; Zhang Y
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for extraordinary optical transmission through bull's eye structures.
    Carretero-Palacios S; Mahboub O; Garcia-Vidal FJ; Martin-Moreno L; Rodrigo SG; Genet C; Ebbesen TW
    Opt Express; 2011 May; 19(11):10429-42. PubMed ID: 21643298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of Radiative Damping and Enhancement of Second Harmonic Generation in Bull's Eye Nanoresonators.
    Yi JM; Smirnov V; Piao X; Hong J; Kollmann H; Silies M; Wang W; Groß P; Vogelgesang R; Park N; Lienau C
    ACS Nano; 2016 Jan; 10(1):475-83. PubMed ID: 26635078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced fluorescence microscopy with the Bull's eye-plasmonic chip.
    Tawa K; Izumi S; Sasakawa C; Hosokawa C; Toma M
    Opt Express; 2017 May; 25(9):10622-10631. PubMed ID: 28468434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization dependent enhanced optical transmission through a sub-wavelength polygonal aperture surrounded by polygonal grooves.
    Nazari T; Khazaeinezhad R; Kassani SH; Jung W; Shin I; Kang D; Oh K
    Opt Express; 2014 Nov; 22(22):27476-88. PubMed ID: 25401895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced optical transmission through a star-shaped bull's eye at dual resonant-bands in UV and the visible spectral range.
    Nazari T; Khazaeinezhad R; Jung W; Joo B; Kong BJ; Oh K
    Opt Express; 2015 Jul; 23(14):18589-601. PubMed ID: 26191917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source.
    Baragwanath AJ; Freeman JR; Gallant AJ; Zeitler JA; Beere HE; Ritchie DA; Chamberlain JM
    Opt Lett; 2011 Jul; 36(13):2393-5. PubMed ID: 21725422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser ablation of silicon using a Bessel-like beam generated by a subwavelength annular aperture structure.
    Yu YY; Chang CK; Lai MW; Huang LS; Lee CK
    Appl Opt; 2011 Dec; 50(34):6384-90. PubMed ID: 22192990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split Bull's eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector.
    Ren FF; Ang KW; Ye J; Yu M; Lo GQ; Kwong DL
    Nano Lett; 2011 Mar; 11(3):1289-93. PubMed ID: 21306111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoantenna effect dependent on the center structure of Bull's eye-type plasmonic chip.
    Nagasue T; Shinohara T; Hasegawa S; Imura K; Tawa K
    Opt Express; 2022 Feb; 30(5):7526-7538. PubMed ID: 35299513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-Tunable Terahertz Plasmonic Structure Based on the Solid Immersed Method for Sensing.
    Sugaya T; Kawano Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractal H-shaped plasmonic nanocavity.
    Li G; Chen X; Ni B; Li O; Huang L; Jiang Y; Hu W; Lu W
    Nanotechnology; 2013 May; 24(20):205702. PubMed ID: 23598737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of bull's eye structures for transmission enhancement.
    Mahboub O; Palacios SC; Genet C; Garcia-Vidal FJ; Rodrigo SG; Martin-Moreno L; Ebbesen TW
    Opt Express; 2010 May; 18(11):11292-9. PubMed ID: 20588990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-field nanofocusing through a combination of plasmonic Bragg reflector and converging lens.
    Song W; Fang Z; Huang S; Lin F; Zhu X
    Opt Express; 2010 Jul; 18(14):14762-7. PubMed ID: 20639962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical phase and surface plasmon focusing with azimuthal polarization.
    Chen W; Nelson RL; Zhan Q
    Opt Lett; 2012 Feb; 37(4):581-3. PubMed ID: 22344113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly directive plasmonic structure with double resonance at excitation and emission for molecule-enhanced fluorescence.
    Wang F; Kang G
    Appl Opt; 2018 Jan; 57(2):237-241. PubMed ID: 29328170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.