BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24104011)

  • 1. Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities.
    Wei HS; Jaing CC; Chen YT; Lin CC; Cheng CW; Chan CH; Lee CC; Chang JF
    Opt Express; 2013 Sep; 21(18):21365-73. PubMed ID: 24104011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong coupling in a microcavity LED.
    Tischler JR; Bradley MS; Bulović V; Song JH; Nurmikko A
    Phys Rev Lett; 2005 Jul; 95(3):036401. PubMed ID: 16090759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of light-matter interaction parameters in organic single-crystal microcavities.
    Nishimura T; Yamashita K; Takahashi S; Yamao T; Hotta S; Yanagi H; Nakayama M
    Opt Lett; 2018 Mar; 43(5):1047-1050. PubMed ID: 29489777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates.
    Balci S
    Opt Lett; 2013 Nov; 38(21):4498-501. PubMed ID: 24177129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process dependence of morphology and microstructure of cyanine dye J-aggregate film: correlation with absorption, photo- and electroluminescence properties.
    Chang JF; Chien FC; Cheng CW; Lin CC; Lu YH; Wei HS; Jaing CC; Lee CC
    Opt Express; 2014 Dec; 22(24):29388-97. PubMed ID: 25606873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture.
    Chang JF; Lin TY; Hsu CF; Chen SY; Hong SY; Ciou GS; Jaing CC; Lee CC
    Opt Express; 2020 Dec; 28(26):39781-39789. PubMed ID: 33379520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Yield of Polariton Emission from Hybrid Light-Matter States.
    Wang S; Chervy T; George J; Hutchison JA; Genet C; Ebbesen TW
    J Phys Chem Lett; 2014 Apr; 5(8):1433-9. PubMed ID: 26269990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates.
    Spano FC
    J Chem Phys; 2015 May; 142(18):184707. PubMed ID: 25978905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of exciton-polaritons in ZnO-based hybrid microcavities.
    Chen JR; Lu TC; Wu YC; Lin SC; Hsieh WF; Wang SC; Deng H
    Opt Express; 2011 Feb; 19(5):4101-12. PubMed ID: 21369239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuously-tunable light-matter coupling in optical microcavities with 2D semiconductors.
    Wall F; Mey O; Schneider LM; Rahimi-Iman A
    Sci Rep; 2020 May; 10(1):8303. PubMed ID: 32427933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities.
    Graf A; Tropf L; Zakharko Y; Zaumseil J; Gather MC
    Nat Commun; 2016 Oct; 7():13078. PubMed ID: 27721454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.
    Pradeesh K; Baumberg JJ; Prakash GV
    Opt Express; 2009 Nov; 17(24):22171-8. PubMed ID: 19997463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room-temperature polariton lasing in GaN microrods with large Rabi splitting.
    Chen H; Li J; Yu G; Zong H; Lang R; Lei M; Li S; Khan MSA; Yang Y; Wei T; Liao H; Meng L; Wen P; Hu X
    Opt Express; 2022 May; 30(10):16794-16801. PubMed ID: 36221514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Second-Order Nonlinearity for THz Generation by Resonant Interaction of Exciton-Polariton Rabi Oscillations with Optical Phonons.
    Rojan K; Léger Y; Morigi G; Richard M; Minguzzi A
    Phys Rev Lett; 2017 Sep; 119(12):127401. PubMed ID: 29341639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Hybrid exciton-Photon Fano Resonances in Two-Dimensional Organic-Inorganic Perovskite Thin Films.
    Muckel F; Guye KN; Gallagher SM; Liu Y; Ginger DS
    Nano Lett; 2021 Jul; 21(14):6124-6131. PubMed ID: 34269589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong-coupling in inorganic-organic hybrid embedded single and coupled metallic microcavities.
    Pradeesh K; Prakash GV
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10715-9. PubMed ID: 22408980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton-Plasmon Coupling Enhancement via Metal Oxidation.
    Todisco F; D'Agostino S; Esposito M; Fernández-Domínguez AI; De Giorgi M; Ballarini D; Dominici L; Tarantini I; Cuscuná M; Della Sala F; Gigli G; Sanvitto D
    ACS Nano; 2015 Oct; 9(10):9691-9. PubMed ID: 26378956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures.
    Vasa P; Pomraenke R; Cirmi G; De Re E; Wang W; Schwieger S; Leipold D; Runge E; Cerullo G; Lienau C
    ACS Nano; 2010 Dec; 4(12):7559-65. PubMed ID: 21082799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-temperature Tamm-plasmon exciton-polaritons with a WSe
    Lundt N; Klembt S; Cherotchenko E; Betzold S; Iff O; Nalitov AV; Klaas M; Dietrich CP; Kavokin AV; Höfling S; Schneider C
    Nat Commun; 2016 Oct; 7():13328. PubMed ID: 27796288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.