These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 24104023)

  • 21. A high-flux high-order harmonic source.
    Rudawski P; Heyl CM; Brizuela F; Schwenke J; Persson A; Mansten E; Rakowski R; Rading L; Campi F; Kim B; Johnsson P; L'huillier A
    Rev Sci Instrum; 2013 Jul; 84(7):073103. PubMed ID: 23902040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-Photon Ionization of He through a Superposition of Higher Harmonics.
    Papadogiannis NA; Nikolopoulos LA; Charalambidis D; Tsakiris GD; Tzallas P; Witte K
    Phys Rev Lett; 2003 Apr; 90(13):133902. PubMed ID: 12689290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative characterization of energy absorption in femtosecond laser micro-modification of fused silica.
    Dostovalov AV; Wolf AA; Mezentsev VK; Okhrimchuk AG; Babin SA
    Opt Express; 2015 Dec; 23(25):32541-7. PubMed ID: 26699043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of sub-50-fs vacuum ultraviolet pulses by four-wave mixing in argon.
    Beutler M; Ghotbi M; Noack F; Hertel IV
    Opt Lett; 2010 May; 35(9):1491-3. PubMed ID: 20436613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of tunable sub-45 femtosecond pulses by noncollinear four-wave mixing.
    Ghotbi M; Trabs P; Beutler M; Noack F
    Opt Lett; 2013 Feb; 38(4):486-8. PubMed ID: 23455111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vacuum ultraviolet single photon versus femtosecond multiphoton ionization of sputtered germanium clusters.
    Wucher A; Heinrich R; Braun RM; Willey KF; Winograd N
    Rapid Commun Mass Spectrom; 1998; 12(18):1241-5. PubMed ID: 9772766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-color two-photon excitation using femtosecond laser pulses.
    Quentmeier S; Denicke S; Ehlers JE; Niesner RA; Gericke KH
    J Phys Chem B; 2008 May; 112(18):5768-73. PubMed ID: 18407711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction of Sm(3+) to Sm(2+) by an intense femtosecond laser pulse in solution.
    Nishida D; Yamade E; Kusaba M; Yatsuhashi T; Nakashima N
    J Phys Chem A; 2010 May; 114(18):5648-54. PubMed ID: 20405937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase and group velocity matching for second harmonic generation of femtosecond pulses.
    Zhang TR; Choo HR; Downer MC
    Appl Opt; 1990 Sep; 29(27):3927-33. PubMed ID: 20577315
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays.
    Bartels R; Backus S; Zeek E; Misoguti L; Vdovin G; Christov IP; Murnane MM; Kapteyn HC
    Nature; 2000 Jul; 406(6792):164-6. PubMed ID: 10910350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extension of high harmonic spectroscopy in molecules by a 1300 nm laser field.
    Torres R; Siegel T; Brugnera L; Procino I; Underwood JG; Altucci C; Velotta R; Springate E; Froud C; Turcu IC; Ivanov MY; Smirnova O; Marangos JP
    Opt Express; 2010 Feb; 18(3):3174-80. PubMed ID: 20174156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations.
    Wang C; Huo H; Johnson M; Shen M; Mazur E
    Nanotechnology; 2010 Feb; 21(7):75304. PubMed ID: 20090197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ramsey-type spectroscopy with high-order harmonics.
    Cavalieri S; Eramo R; Materazzi M; Corsi C; Bellini M
    Phys Rev Lett; 2002 Sep; 89(13):133002. PubMed ID: 12225021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A tabletop femtosecond time-resolved soft x-ray transient absorption spectrometer.
    Loh ZH; Khalil M; Correa RE; Leone SR
    Rev Sci Instrum; 2008 Jul; 79(7):073101. PubMed ID: 18681685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reproductive death of cancer cells induced by femtosecond laser pulses.
    Thøgersen J; Knudsen CS; Maetzke A; Jensen SJ; Keiding SR; Alsner J; Overgaard J
    Int J Radiat Biol; 2007 May; 83(5):289-99. PubMed ID: 17457754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanopatterning of silicon via the near-field enhancement effect upon double-pulse femtosecond laser exposure.
    Hong Q; Zhang J; Wang S; Chu Z; Wang M; Sun J; Guo Q
    Appl Opt; 2021 Sep; 60(25):7790-7797. PubMed ID: 34613252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancement of high harmonics from plasmas using two-color pump and chirp variation of 1 kHz Ti:sapphire laser pulses.
    Ganeev RA; Hutchison C; Zaïr A; Witting T; Frank F; Okell WA; Tisch JW; Marangos JP
    Opt Express; 2012 Jan; 20(1):90-100. PubMed ID: 22274332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films.
    Balling P; Schou J
    Rep Prog Phys; 2013 Mar; 76(3):036502. PubMed ID: 23439493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Observation of a train of attosecond pulses from high harmonic generation.
    Paul PM; Toma ES; Breger P; Mullot G; Auge F; Balcou P; Muller HG; Agostini P
    Science; 2001 Jun; 292(5522):1689-92. PubMed ID: 11387467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.
    Müller A; Jensen OB; Unterhuber A; Le T; Stingl A; Hasler KH; Sumpf B; Erbert G; Andersen PE; Petersen PM
    Opt Express; 2011 Jun; 19(13):12156-63. PubMed ID: 21716452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.