These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24104037)

  • 21. Uni-directional wavelength conversion in silicon using four-wave mixing driven by cross-polarized pumps.
    Bell BA; Xiong C; Marpaung D; McKinstrie CJ; Eggleton BJ
    Opt Lett; 2017 May; 42(9):1668-1671. PubMed ID: 28454131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of spectral broadening on femtosecond wavelength conversion based on four-wave mixing in silicon waveguides.
    Wang Z; Liu H; Huang N; Sun Q; Wen J
    Appl Opt; 2011 Oct; 50(28):5430-6. PubMed ID: 22016209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triply resonant four-wave mixing in silicon-coupled resonator microring waveguides.
    Ong JR; Kumar R; Mookherjea S
    Opt Lett; 2014 Oct; 39(19):5653-6. PubMed ID: 25360951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity.
    Zeng X; Popović MA
    Opt Express; 2014 Jun; 22(13):15837-67. PubMed ID: 24977841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations.
    Li J; O'Faolain L; Rey IH; Krauss TF
    Opt Express; 2011 Feb; 19(5):4458-63. PubMed ID: 21369277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters.
    Agha I; Ates S; Sapienza L; Srinivasan K
    Opt Lett; 2014 Oct; 39(19):5677-80. PubMed ID: 25360957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized wavelength conversion in silicon waveguides based on "off-Raman-resonance" operation: extending the phase mismatch formalism.
    Lefevre Y; Vermeulen N; Debaes C; Thienpont H
    Opt Express; 2011 Sep; 19(20):18810-26. PubMed ID: 21996824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultralow noise up-conversion detector and spectrometer for the telecom band.
    Shentu GL; Pelc JS; Wang XD; Sun QC; Zheng MY; Fejer MM; Zhang Q; Pan JW
    Opt Express; 2013 Jun; 21(12):13986-91. PubMed ID: 23787588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient four wave mixing in GaInP photonic crystal waveguides.
    Eckhouse V; Cestier I; Eisenstein G; Combrié S; Colman P; De Rossi A; Santagiustina M; Someda CG; Vadalà G
    Opt Lett; 2010 May; 35(9):1440-2. PubMed ID: 20436596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frequency conversion over two-thirds of an octave in silicon nanowaveguides.
    Turner-Foster AC; Foster MA; Salem R; Gaeta AL; Lipson M
    Opt Express; 2010 Feb; 18(3):1904-8. PubMed ID: 20174018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides.
    Rong H; Kuo YH; Liu A; Paniccia M; Cohen O
    Opt Express; 2006 Feb; 14(3):1182-8. PubMed ID: 19503440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bragg-scattering conversion at telecom wavelengths towards the photon counting regime.
    Krupa K; Tonello A; Kozlov VV; Couderc V; Di Bin P; Wabnitz S; Barthélémy A; Labonté L; Tanzilli S
    Opt Express; 2012 Nov; 20(24):27220-5. PubMed ID: 23187577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
    Contestabile G; Yoshida Y; Maruta A; Kitayama K
    Opt Express; 2012 Dec; 20(25):27902-7. PubMed ID: 23262735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides.
    Carlson DR; Hickstein DD; Lind A; Droste S; Westly D; Nader N; Coddington I; Newbury NR; Srinivasan K; Diddams SA; Papp SB
    Opt Lett; 2017 Jun; 42(12):2314-2317. PubMed ID: 28614340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Second- and third-order nonlinear wavelength conversion in an all-optically poled Si
    Grassani D; Pfeiffer MHP; Kippenberg TJ; Brès CS
    Opt Lett; 2019 Jan; 44(1):106-109. PubMed ID: 30645554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient C-band single-photon upconversion with chip-scale Ti-indiffused pp-LiNbO
    Xie Z; Luo KH; Chang KC; Panoiu NC; Herrmann H; Silberhorn C; Wong CW
    Appl Opt; 2019 Aug; 58(22):5910-5915. PubMed ID: 31503905
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low control-power wavelength conversion on a silicon chip.
    Zhao Y; Lombardo D; Mathews J; Agha I
    Opt Lett; 2016 Aug; 41(15):3651-4. PubMed ID: 27472641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Difference-frequency generation in AlGaAs Bragg reflection waveguides.
    Han JB; Abolghasem P; Kang D; Bijlani BJ; Helmy AS
    Opt Lett; 2010 Jul; 35(14):2334-6. PubMed ID: 20634821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All-optical wavelength conversion for telecommunication mode-division multiplexing signals in integrated silicon waveguides.
    Xu Z; Jin Q; Tu Z; Gao S
    Appl Opt; 2018 Jun; 57(18):5036-5042. PubMed ID: 30117963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Wavelength conversion and spectral analysis in periodically polarized lithium niobate waveguide].
    Luo CH; Sun JQ; Zhu YX; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1209-12. PubMed ID: 18800689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.