BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24104073)

  • 1. Occlusion culling for computer generated hologram based on ray-wavefront conversion.
    Wakunami K; Yamashita H; Yamaguchi M
    Opt Express; 2013 Sep; 21(19):21811-22. PubMed ID: 24104073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation for computer generated hologram using ray-sampling plane.
    Wakunami K; Yamaguchi M
    Opt Express; 2011 May; 19(10):9086-101. PubMed ID: 21643163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-generated photorealistic hologram using ray-wavefront conversion based on the additive compressive light field approach.
    Wang Z; Zhu LM; Zhang X; Dai P; Lv GQ; Feng QB; Wang AT; Ming H
    Opt Lett; 2020 Feb; 45(3):615-618. PubMed ID: 32004265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling.
    Symeonidou A; Blinder D; Munteanu A; Schelkens P
    Opt Express; 2015 Aug; 23(17):22149-61. PubMed ID: 26368189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speckle-suppression in hologram calculation using ray-sampling plane.
    Utsugi T; Yamaguchi M
    Opt Express; 2014 Jul; 22(14):17193-206. PubMed ID: 25090533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From image pair to a computer generated hologram for a real-world scene.
    Ding S; Cao S; Zheng YF; Ewing RL
    Appl Opt; 2016 Sep; 55(27):7583-92. PubMed ID: 27661586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A framework for holographic scene representation and image synthesis.
    Ziegler R; Kaufmann P; Gross M
    IEEE Trans Vis Comput Graph; 2007; 13(2):403-15. PubMed ID: 17218755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration and expansion of a photorealistic computer-generated hologram using backward ray tracing and multiple off-axis wavefront recording plane methods.
    Sun M; Yuan Y; Bi Y; Zhang S; Zhu J; Zhang W
    Opt Express; 2020 Nov; 28(23):34994-35005. PubMed ID: 33182955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution three-dimensional holographic display using dense ray sampling from integral imaging.
    Wakunami K; Yamaguchi M; Javidi B
    Opt Lett; 2012 Dec; 37(24):5103-5. PubMed ID: 23258019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast method of calculating a photorealistic hologram based on orthographic ray-wavefront conversion.
    Igarashi S; Nakamura T; Yamaguchi M
    Opt Lett; 2016 Apr; 41(7):1396-9. PubMed ID: 27192245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling.
    Jia J; Liu J; Jin G; Wang Y
    Appl Opt; 2014 Sep; 53(27):6287-93. PubMed ID: 25322109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-generated hologram with occlusion effect using layer-based processing.
    Zhang H; Cao L; Jin G
    Appl Opt; 2017 May; 56(13):F138-F143. PubMed ID: 28463308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram.
    Askari M; Kim SB; Shin KS; Ko SB; Kim SH; Park DY; Ju YG; Park JH
    Opt Express; 2017 Oct; 25(21):25867-25878. PubMed ID: 29041249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realistic expression for full-parallax computer-generated holograms with the ray-tracing method.
    Ichikawa T; Yamaguchi K; Sakamoto Y
    Appl Opt; 2013 Jan; 52(1):A201-9. PubMed ID: 23292395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient calculation scheme for high pixel resolution non-hogel-based computer generated hologram from light field.
    Park JH
    Opt Express; 2020 Mar; 28(5):6663-6683. PubMed ID: 32225909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-hogel-based computer generated hologram with occlusion processing between the foreground light field and background hologram.
    Min D; Min K; Choi HJ; Lee H; Park JH
    Opt Express; 2022 Oct; 30(21):38339-38356. PubMed ID: 36258402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional computer holography enabled from a single 2D image.
    Chang C; Zhu D; Li J; Wang D; Xia J; Zhang X
    Opt Lett; 2022 May; 47(9):2202-2205. PubMed ID: 35486760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of wavefront recording plane-based hologram calculations: ray-tracing method versus look-up table method.
    Yanagihara H; Shimobaba T; Kakue T; Ito T
    Appl Opt; 2020 Mar; 59(8):2400-2408. PubMed ID: 32225774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion.
    Igarashi S; Nakamura T; Matsushima K; Yamaguchi M
    Opt Express; 2018 Apr; 26(8):10773-10786. PubMed ID: 29716009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display.
    Pi D; Liu J; Han Y; Yu S; Xiang N
    Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.