These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24104134)

  • 1. Synthetic Fourier transform light scattering.
    Lee K; Kim HD; Kim K; Kim Y; Hillman TR; Min B; Park Y
    Opt Express; 2013 Sep; 21(19):22453-63. PubMed ID: 24104134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells.
    Park Y; Diez-Silva M; Fu D; Popescu G; Choi W; Barman I; Suresh S; Feld MS
    J Biomed Opt; 2010; 15(2):020506. PubMed ID: 20459219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using elastic light scattering of red blood cells to detect infection of malaria parasite.
    Lee S; Lu W
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):150-5. PubMed ID: 21926010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fourier transform light scattering angular spectroscopy using digital inline holography.
    Kim K; Park Y
    Opt Lett; 2012 Oct; 37(19):4161-3. PubMed ID: 23027312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells.
    Gilev KV; Eremina E; Yurkin MA; Maltsev VP
    Opt Express; 2010 Mar; 18(6):5681-90. PubMed ID: 20389584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective phase function for light scattered by blood.
    Turcu I
    Appl Opt; 2006 Feb; 45(4):639-47. PubMed ID: 16485674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation of red blood cells in suspension: study by light-scattering technique at small angles.
    Pop CV; Neamtu S
    J Biomed Opt; 2008; 13(4):041308. PubMed ID: 19021316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier-transform light scattering of individual colloidal clusters.
    Yu H; Park H; Kim Y; Kim MW; Park Y
    Opt Lett; 2012 Jul; 37(13):2577-9. PubMed ID: 22743460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light scattering of human red blood cells during metabolic remodeling of the membrane.
    Park Y; Best-Popescu CA; Dasari RR; Popescu G
    J Biomed Opt; 2011; 16(1):011013. PubMed ID: 21280900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of polarization-dependent angle-resolved light scattering from individual microscopic samples using Fourier transform light scattering.
    Jung J; Kim J; Seo MK; Park Y
    Opt Express; 2018 Mar; 26(6):7701-7711. PubMed ID: 29609322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the hyperspectral imaging-based spatially-resolved system for measuring the optical properties of biological materials.
    Cen H; Lu R
    Opt Express; 2010 Aug; 18(16):17412-32. PubMed ID: 20721128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectro-angular light scattering measurements of individual microscopic objects.
    Jung J; Park Y
    Opt Express; 2014 Feb; 22(4):4108-14. PubMed ID: 24663733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-based dynamic light scattering microscopy: theory and numerical analysis.
    Joo C; de Boer JF
    Appl Opt; 2013 Nov; 52(31):7618-28. PubMed ID: 24216666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of scattering from healthy and diseased red blood cells.
    Ergül O; Arslan-Ergül A; Gürel L
    J Biomed Opt; 2010; 15(4):045004. PubMed ID: 20799799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle-sizing methods: a stationary-phase-based comparison.
    Schiffer Z; Deutsch M
    Appl Opt; 2007 Apr; 46(12):2209-18. PubMed ID: 17415389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 250 years Lambert surface: does it really exist?
    Kienle A; Foschum F
    Opt Express; 2011 Feb; 19(5):3881-9. PubMed ID: 21369213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multipole-expansion based linear sampling method for solving inverse scattering problems.
    Agarwal K; Chen X; Zhong Y
    Opt Express; 2010 Mar; 18(6):6366-81. PubMed ID: 20389660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging.
    Qin J; Lu R
    Appl Spectrosc; 2007 Apr; 61(4):388-96. PubMed ID: 17456257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem.
    Avanaki MR; Podoleanu AG; Schofield JB; Jones C; Sira M; Liu Y; Hojjat A
    Appl Opt; 2013 Mar; 52(8):1574-80. PubMed ID: 23478759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.