These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24104147)

  • 1. Accelerated solution of the frequency-domain Maxwell's equations by engineering the eigenvalue distribution of the operator.
    Shin W; Fan S
    Opt Express; 2013 Sep; 21(19):22578-95. PubMed ID: 24104147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computationally efficient finite-difference modal method for the solution of Maxwell's equations.
    Semenikhin I; Zanuccoli M
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2531-8. PubMed ID: 24323014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis.
    Johnson S; Joannopoulos J
    Opt Express; 2001 Jan; 8(3):173-90. PubMed ID: 19417802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating convergence of an iterative solution of finite difference frequency domain problems via schur complement domain decomposition.
    Zhao N; Verweij S; Shin W; Fan S
    Opt Express; 2018 Jun; 26(13):16925-16939. PubMed ID: 30119511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.
    Hesthaven JS; Warburton T
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple yet effective analysis of waveguide mode symmetry: generalized eigenvalue approach based on Maxwell's equations.
    Guo W; Wu Y; Xiong Z; Jing Y; Chen Y
    Opt Express; 2022 Oct; 30(21):37910-37924. PubMed ID: 36258370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG.
    Rahol J; Tissari S
    Phys Med Biol; 2002 Mar; 47(6):961-75. PubMed ID: 11936181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse diffraction grating of Maxwell's equations in biperiodic structures.
    Bao G; Cui T; Li P
    Opt Express; 2014 Feb; 22(4):4799-816. PubMed ID: 24663798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven acceleration of photonic simulations.
    Trivedi R; Su L; Lu J; Schubert MF; Vuckovic J
    Sci Rep; 2019 Dec; 9(1):19728. PubMed ID: 31871322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact and approximate solutions of Maxwell's equations for a confocal cavity.
    Varga P; Török P
    Opt Lett; 1996 Oct; 21(19):1523-5. PubMed ID: 19881712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reformulation of Maxwell's equations to incorporate near-solute solvent structure.
    Yang PK; Lim C
    J Phys Chem B; 2008 Sep; 112(35):10791-4. PubMed ID: 18698705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical solution of the time-dependent Maxwell's equations for random dielectric media.
    Harshawardhan W; Su Q; Grobe R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8705-12. PubMed ID: 11138172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral convergence of the quadrature discretization method in the solution of the Schrodinger and Fokker-Planck equations: comparison with sinc methods.
    Lo J; Shizgal BD
    J Chem Phys; 2006 Nov; 125(19):194108. PubMed ID: 17129090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell's equations.
    Handapangoda CC; Premaratne M; Paganin DM; Hendahewa PR
    Opt Express; 2008 Oct; 16(22):17792-807. PubMed ID: 18958061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The double nature of Maxwell's physical analogies.
    Nappo F
    Stud Hist Philos Sci; 2021 Oct; 89():212-225. PubMed ID: 34482162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics-constrained machine learning for electrodynamics without gauge ambiguity based on Fourier transformed Maxwell's equations.
    Leon C; Scheinker A
    Sci Rep; 2024 Jun; 14(1):14809. PubMed ID: 38926466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution of the inhomogeneous Maxwell's equations using a Born series.
    Krüger B; Brenner T; Kienle A
    Opt Express; 2017 Oct; 25(21):25165-25182. PubMed ID: 29041187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of the scalar radiative transfer equation from energy conservation of Maxwell's equations in the far field.
    Ripoll J
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1765-75. PubMed ID: 21811340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of subwavelength metallic gratings using a new implementation of the recursive convolution finite-difference time-domain algorithm.
    Banerjee S; Hoshino T; Cole JB
    J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):1921-8. PubMed ID: 18677354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
    Kaminer I; Nemirovsky J; Segev M
    Opt Express; 2012 Aug; 20(17):18827-35. PubMed ID: 23038522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.