These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24104163)

  • 1. Effect of bending on surface plasmon resonance spectrum in microstructured optical fibers.
    Napiorkowski M; Urbanczyk W
    Opt Express; 2013 Sep; 21(19):22762-72. PubMed ID: 24104163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core.
    Luan N; Wang R; Lv W; Yao J
    Opt Express; 2015 Apr; 23(7):8576-82. PubMed ID: 25968695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of surface plasmon resonance in metalized optical waveguides with low V number by eigenmode expansion method.
    Dyshlyuk AV; Vitrik OB; Kulchin YN
    Opt Express; 2015 Feb; 23(4):3996-4001. PubMed ID: 25836438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating.
    Spacková B; Homola J
    Opt Express; 2009 Dec; 17(25):23254-64. PubMed ID: 20052251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bending loss of elliptical-hole core circular-hole holey fibers bent in arbitrary bending directions.
    Eguchi M; Tsuji Y
    Appl Opt; 2010 Nov; 49(32):6207-12. PubMed ID: 21068849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of surface plasmon resonance in bent single-mode waveguides with metal-coated cladding by eigenmode expansion method.
    Kulchin YN; Vitrik OB; Dyshlyuk AV
    Opt Express; 2014 Sep; 22(18):22196-201. PubMed ID: 25321595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of embedded-core hollow optical fiber.
    Guan C; Tian F; Dai Q; Yuan L
    Opt Express; 2011 Oct; 19(21):20069-78. PubMed ID: 21997017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-birefringence photonic crystal fiber polarization filter based on surface plasmon resonance.
    An G; Li S; Yan X; Yuan Z; Zhang X
    Appl Opt; 2016 Feb; 55(6):1262-6. PubMed ID: 26906577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode degeneration in bent photonic crystal fiber study by using the finite element method.
    Rahman BM; Kejalakshmy N; Uthman M; Agrawal A; Wongcharoen T; Grattan KT
    Appl Opt; 2009 Nov; 48(31):G131-8. PubMed ID: 19881634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rigorous simulations of coupling between core and cladding modes in a double-helix fiber.
    Napiorkowski M; Urbanczyk W
    Opt Lett; 2015 Jul; 40(14):3324-7. PubMed ID: 26176460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics.
    Hassani A; Skorobogatiy M
    Opt Express; 2006 Nov; 14(24):11616-21. PubMed ID: 19529581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of bent photonic crystal fiber supporting a single polarization.
    Rahman BM; Uthman M; Kejalakshmy N; Agrawal A; Grattan KT
    Appl Opt; 2011 Dec; 50(35):6505-11. PubMed ID: 22193129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers.
    Olszewski J; Szpulak M; Urbańczyk W
    Opt Express; 2005 Aug; 13(16):6015-22. PubMed ID: 19498609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of bending losses on cladding thickness in plastic optical fibers.
    Durana G; Zubia J; Arrue J; Aldabaldetreku G; Mateo J
    Appl Opt; 2003 Feb; 42(6):997-1002. PubMed ID: 12617215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study of an intensity-modulated curvature sensor with high sensitivity based on microstructured optical fiber.
    Yin Z; Jing X; Li K; Wu B
    Opt Express; 2023 Jan; 31(3):4770-4782. PubMed ID: 36785436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber.
    Rajapakse C; Wang F; Tang TC; Reece PJ; Leon-Saval SG; Argyros A
    Opt Express; 2012 May; 20(10):11232-40. PubMed ID: 22565745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling effects in resonant coupling phenomena between fundamental and cladding modes in twisted microstructured optical fibers.
    Napiorkowski M; Urbanczyk W
    Opt Express; 2018 Apr; 26(9):12131-12143. PubMed ID: 29716128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing.
    Frosz MH; Stefani A; Bang O
    Opt Express; 2011 May; 19(11):10471-84. PubMed ID: 21643302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large mode area silicon microstructured fiber with robust dual mode guidance.
    Healy N; Sparks JR; Petrovich MN; Sazio PJ; Badding JV; Peacock AC
    Opt Express; 2009 Sep; 17(20):18076-82. PubMed ID: 19907597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm.
    Pryamikov AD; Biriukov AS; Kosolapov AF; Plotnichenko VG; Semjonov SL; Dianov EM
    Opt Express; 2011 Jan; 19(2):1441-8. PubMed ID: 21263685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.