These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24104172)

  • 1. Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis.
    Bi R; Dong J; Lee K
    Opt Express; 2013 Sep; 21(19):22854-61. PubMed ID: 24104172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep tissue flowmetry based on diffuse speckle contrast analysis.
    Bi R; Dong J; Lee K
    Opt Lett; 2013 May; 38(9):1401-3. PubMed ID: 23632498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into image processing of cortical blood flow monitors using laser speckle imaging.
    Le Thinh M; Paul JS; Al-Nashash H; Tan A; Luft AR; Sheu FS; Ong SH
    IEEE Trans Med Imaging; 2007 Jun; 26(6):833-42. PubMed ID: 17679334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast pulsatile blood flow measurement in deep tissue through a multimode detection fiber.
    Bi R; Du Y; Singh G; Ho CJ; Zhang S; Attia ABE; Li X; Olivo M
    J Biomed Opt; 2020 May; 25(5):1-10. PubMed ID: 32406214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frame-rate ultrasound color-encoded speckle imaging of complex flow dynamics.
    Yiu BY; Yu AC
    Ultrasound Med Biol; 2013 Jun; 39(6):1015-25. PubMed ID: 23511009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues.
    Li Z; Li H; He Y; Cai S; Xie S
    Phys Med Biol; 2008 Oct; 53(20):5859-66. PubMed ID: 18827323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning protocols dedicated to smart velocity ranging in spectral OCT.
    Grulkowski I; Gorczynska I; Szkulmowski M; Szlag D; Szkulmowska A; Leitgeb RA; Kowalczyk A; Wojtkowski M
    Opt Express; 2009 Dec; 17(26):23736-54. PubMed ID: 20052085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-gated Fourier velocity encoding.
    Macgowan CK; Liu GK; van Amerom JF; Sussman MS; Wright GA
    Magn Reson Imaging; 2010 Jan; 28(1):95-102. PubMed ID: 19553052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic laser speckle imaging of cerebral blood flow.
    Zakharov P; Völker AC; Wyss MT; Haiss F; Calcinaghi N; Zunzunegui C; Buck A; Scheffold F; Weber B
    Opt Express; 2009 Aug; 17(16):13904-17. PubMed ID: 19654798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coded ultrasound for blood flow estimation using subband processing.
    Gran F; Udesen J; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of optical flow algorithms to laser speckle imaging.
    Aminfar A; Davoodzadeh N; Aguilar G; Princevac M
    Microvasc Res; 2019 Mar; 122():52-59. PubMed ID: 30414869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast-enhanced imaging of cerebral vasculature with laser speckle.
    Murari K; Li N; Rege A; Jia X; All A; Thakor N
    Appl Opt; 2007 Aug; 46(22):5340-6. PubMed ID: 17676149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal detection pinhole for lowering speckle noise while maintaining adequate optical sectioning in confocal reflectance microscopes.
    Glazowski C; Rajadhyaksha M
    J Biomed Opt; 2012 Aug; 17(8):085001. PubMed ID: 23224184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic 4D blood flow tracking and uncertainty estimation.
    Friman O; Hennemuth A; Harloff A; Bock J; Markl M; Peitgen HO
    Med Image Anal; 2011 Oct; 15(5):720-8. PubMed ID: 21719342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of capillary blood cell flow using reflectance confocal microscopy.
    Cinotti E; Gergelé L; Perrot JL; Dominé A; Labeille B; Borelli P; Cambazard F
    Skin Res Technol; 2014 Aug; 20(3):373-8. PubMed ID: 24506277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of tissue optical properties on laser Doppler perfusion imaging, accounting for photon penetration depth and the laser speckle phenomenon.
    Rajan V; Varghese B; Van Leeuwen TG; Steenbergen W
    J Biomed Opt; 2008; 13(2):024001. PubMed ID: 18465964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconvolution from wave front sensing using the frozen flow hypothesis.
    Jefferies SM; Hart M
    Opt Express; 2011 Jan; 19(3):1975-84. PubMed ID: 21369013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flow quantification method using fluid dynamics regularization and MR tagging.
    Jiraraksopakun Y; McDougall MP; Wright SM; Ji JX
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1437-45. PubMed ID: 20172815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrieving controlled motion parameters using two speckle pattern analysis techniques: spatiotemporal correlation and the temporal history speckle pattern.
    Nassif R; Abou Nader C; Pellen F; Le Brun G; Abboud M; Le Jeune B
    Appl Opt; 2013 Nov; 52(31):7564-9. PubMed ID: 24216659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient processing of laser speckle contrast images.
    Tom WJ; Ponticorvo A; Dunn AK
    IEEE Trans Med Imaging; 2008 Dec; 27(12):1728-38. PubMed ID: 19033089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.