BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1595 related articles for article (PubMed ID: 24104211)

  • 41. Effect of bending stiffness on the deformation of liquid capsules enclosed by thin shells in shear flow.
    Le DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016318. PubMed ID: 20866736
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration.
    Tözeren A; Skalak R; Fedorciw B; Sung KL; Chien S
    Biophys J; 1984 Mar; 45(3):541-9. PubMed ID: 6713066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tension of red blood cell membrane in simple shear flow.
    Omori T; Ishikawa T; Barthès-Biesel D; Salsac AV; Imai Y; Yamaguchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056321. PubMed ID: 23214889
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.
    Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluid vesicles with viscous membranes in shear flow.
    Noguchi H; Gompper G
    Phys Rev Lett; 2004 Dec; 93(25):258102. PubMed ID: 15697949
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Numerical approach to the motion of a red blood cell in Couette flow.
    Sugihara M; Niimi H
    Biorheology; 1984; 21(6):735-49. PubMed ID: 6518286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanics of curved plasma membrane vesicles: resting shapes, membrane curvature, and in-plane shear elasticity.
    Kosawada T; Inoue K; Schmid-Schönbein GW
    J Biomech Eng; 2005 Apr; 127(2):229-36. PubMed ID: 15971700
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps.
    Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS
    J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow.
    Sui Y; Low HT; Chew YT; Roy P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016310. PubMed ID: 18351937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The dynamics of inextensible capsules in shear flow under the effect of the natural state.
    Niu X; Pan TW; Glowinski R
    Biomech Model Mechanobiol; 2015 Aug; 14(4):865-76. PubMed ID: 25510228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of red blood cell elastic properties in capillary occlusions.
    Božič B; Gomišček G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051902. PubMed ID: 23214809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tank-treading of erythrocytes in strong shear flows via a nonstiff cytoskeleton-based continuum computational modeling.
    Dodson WR; Dimitrakopoulos P
    Biophys J; 2010 Nov; 99(9):2906-16. PubMed ID: 21044588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Numerical simulations of deformation and aggregation of red blood cells in shear flow.
    Low HT; Ju M; Sui Y; Nazir T; Namgung B; Kim S
    Crit Rev Biomed Eng; 2013; 41(4-5):425-34. PubMed ID: 24941417
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamics of a compound vesicle in shear flow.
    Veerapaneni SK; Young YN; Vlahovska PM; Bławzdziewicz J
    Phys Rev Lett; 2011 Apr; 106(15):158103. PubMed ID: 21568618
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
    Mauer J; Mendez S; Lanotte L; Nicoud F; Abkarian M; Gompper G; Fedosov DA
    Phys Rev Lett; 2018 Sep; 121(11):118103. PubMed ID: 30265089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 80.