These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24104228)

  • 1. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity.
    Thyrrestrup H; Hartsuiker A; Gérard JM; Vos WL
    Opt Express; 2013 Oct; 21(20):23130-44. PubMed ID: 24104228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of weak measurement based on atomic spontaneous emission.
    Shomroni I; Bechler O; Rosenblum S; Dayan B
    Phys Rev Lett; 2013 Jul; 111(2):023604. PubMed ID: 23889401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superfluorescent pulsed emission from biexcitons in an ensemble of semiconductor quantum dots.
    Miyajima K; Kagotani Y; Saito S; Ashida M; Itoh T
    J Phys Condens Matter; 2009 May; 21(19):195802. PubMed ID: 21825497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.
    Roy-Choudhury K; Hughes S
    Opt Lett; 2015 Apr; 40(8):1838-41. PubMed ID: 25872087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond.
    Zhang JL; Sun S; Burek MJ; Dory C; Tzeng YK; Fischer KA; Kelaita Y; Lagoudakis KG; Radulaski M; Shen ZX; Melosh NA; Chu S; Lončar M; Vučković J
    Nano Lett; 2018 Feb; 18(2):1360-1365. PubMed ID: 29377701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous generation of single photons with controlled waveform in an ion-trap cavity system.
    Keller M; Lange B; Hayasaka K; Lange W; Walther H
    Nature; 2004 Oct; 431(7012):1075-8. PubMed ID: 15510142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear emission dynamics of a GaAs microcavity with embedded quantum wells.
    Belykh VV; Tsvetkov VA; Skorikov ML; Sibeldin NN
    J Phys Condens Matter; 2011 Jun; 23(21):215302. PubMed ID: 21555833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emission properties and photon statistics of a single quantum dot laser.
    Ritter S; Gartner P; Gies C; Jahnke F
    Opt Express; 2010 May; 18(10):9909-21. PubMed ID: 20588843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous emission of matter waves from a tunable open quantum system.
    Krinner L; Stewart M; Pazmiño A; Kwon J; Schneble D
    Nature; 2018 Jul; 559(7715):589-592. PubMed ID: 30046077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Markovian Collective Emission from Macroscopically Separated Emitters.
    Sinha K; Meystre P; Goldschmidt EA; Fatemi FK; Rolston SL; Solano P
    Phys Rev Lett; 2020 Jan; 124(4):043603. PubMed ID: 32058765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast non-local control of spontaneous emission.
    Jin CY; Johne R; Swinkels MY; Hoang TB; Midolo L; van Veldhoven PJ; Fiore A
    Nat Nanotechnol; 2014 Nov; 9(11):886-90. PubMed ID: 25218324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterministic generation of an on-demand Fock state.
    Xia K; Brennen GK; Ellinas D; Twamley J
    Opt Express; 2012 Nov; 20(24):27198-211. PubMed ID: 23187575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate.
    Mlynek JA; Abdumalikov AA; Eichler C; Wallraff A
    Nat Commun; 2014 Nov; 5():5186. PubMed ID: 25366061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization Dynamics of Solid-State Quantum Emitters.
    Kumar A; Samaner Ç; Cholsuk C; Matthes T; Paçal S; Oyun Y; Zand A; Chapman RJ; Saerens G; Grange R; Suwanna S; Ateş S; Vogl T
    ACS Nano; 2024 Feb; 18(7):5270-81. PubMed ID: 38335970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity.
    McCutcheon MW; Chang DE; Zhang Y; Lukin MD; Loncar M
    Opt Express; 2009 Dec; 17(25):22689-703. PubMed ID: 20052195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.