These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24104238)

  • 1. Entanglement distribution over 300 km of fiber.
    Inagaki T; Matsuda N; Tadanaga O; Asobe M; Takesue H
    Opt Express; 2013 Oct; 21(20):23241-9. PubMed ID: 24104238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors.
    Honjo T; Takesue H; Kamada H; Nishida Y; Tadanaga O; Asobe M; Inoue K
    Opt Express; 2007 Oct; 15(21):13957-64. PubMed ID: 19550669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO(3) waveguide.
    Hunault M; Takesue H; Tadanaga O; Nishida Y; Asobe M
    Opt Lett; 2010 Apr; 35(8):1239-41. PubMed ID: 20410979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed Sagnac source of polarization-entangled photon pairs in telecommunication band.
    Kim H; Kwon O; Moon HS
    Sci Rep; 2019 Mar; 9(1):5031. PubMed ID: 30903029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide.
    Ma L; Slattery O; Chang T; Tang X
    Opt Express; 2009 Aug; 17(18):15799-807. PubMed ID: 19724580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct generation of polarization-entangled photon pairs in a poled fiber.
    Zhu EY; Tang Z; Qian L; Helt LG; Liscidini M; Sipe JE; Corbari C; Canagasabey A; Ibsen M; Kazansky PG
    Phys Rev Lett; 2012 May; 108(21):213902. PubMed ID: 23003253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of 10-GHz clock sequential time-bin entanglement.
    Zhang Q; Langrock C; Takesue H; Xie X; Fejer M; Yamamoto Y
    Opt Express; 2008 Mar; 16(5):3293-8. PubMed ID: 18542417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation in transmission performance of polarization-entangled photon-pairs generated by cascaded χ(2) processes over standard single-mode optical fibers.
    Arahira S; Murai H
    Opt Express; 2012 Jul; 20(14):15336-46. PubMed ID: 22772230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band.
    Li X; Voss PL; Sharping JE; Kumar P
    Phys Rev Lett; 2005 Feb; 94(5):053601. PubMed ID: 15783637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors.
    Zhang Q; Takesue H; Nam SW; Langrock C; Xie X; Baek B; Fejer MM; Yamamoto Y
    Opt Express; 2008 Apr; 16(8):5776-81. PubMed ID: 18542687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of high-purity entangled photon pair in a short highly nonlinear fiber.
    Sua YM; Malowicki J; Hirano M; Lee KF
    Opt Lett; 2013 Jan; 38(1):73-5. PubMed ID: 23282842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-quality fiber-optic polarization entanglement distribution at 1.3 microm telecom wavelength.
    Zhong T; Hu X; Wong FN; Berggren KK; Roberts TD; Battle P
    Opt Lett; 2010 May; 35(9):1392-4. PubMed ID: 20436580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones.
    Fiorentino M; Kuklewicz C; Wong F
    Opt Express; 2005 Jan; 13(1):127-35. PubMed ID: 19488336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hong-Ou-Mandel dip measurements of polarization-entangled photon pairs at 1550 nm.
    Xue Y; Yoshizawa A; Tsuchida H
    Opt Express; 2010 Apr; 18(8):8182-6. PubMed ID: 20588663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entanglement formation and violation of Bell's inequality with a semiconductor single photon source.
    Fattal D; Inoue K; Vucković J; Santori C; Solomon GS; Yamamoto Y
    Phys Rev Lett; 2004 Jan; 92(3):037903. PubMed ID: 14753911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of pulsed polarization-entangled photon pairs in a 1.55-microm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit.
    Takesue H; Inoue K; Tadanaga O; Nishida Y; Asobe M
    Opt Lett; 2005 Feb; 30(3):293-5. PubMed ID: 15751889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber.
    Lim HC; Yoshizawa A; Tsuchida H; Kikuchi K
    Opt Express; 2008 Dec; 16(26):22099-104. PubMed ID: 19104645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-distance entanglement-based quantum key distribution over optical fiber.
    Honjo T; Nam SW; Takesue H; Zhang Q; Kamada H; Nishida Y; Tadanaga O; Asobe M; Baek B; Hadfield R; Miki S; Fujiwara M; Sasaki M; Wang Z; Inoue K; Yamamoto Y
    Opt Express; 2008 Nov; 16(23):19118-26. PubMed ID: 19582004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Quality Entangled Photon Pair Generation in Periodically Poled Thin-Film Lithium Niobate Waveguides.
    Zhao J; Ma C; Rüsing M; Mookherjea S
    Phys Rev Lett; 2020 Apr; 124(16):163603. PubMed ID: 32383916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide.
    Arahira S; Namekata N; Kishimoto T; Yaegashi H; Inoue S
    Opt Express; 2011 Aug; 19(17):16032-43. PubMed ID: 21934967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.