These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 24104274)

  • 1. Tunablity of the unconventional Fano resonances in coated nanowires with radial anisotropy.
    Chen HL; Gao L
    Opt Express; 2013 Oct; 21(20):23619-30. PubMed ID: 24104274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tunable Fano resonance in silver nanoshell with a spherically anisotropic core.
    Wu D; Jiang S; Liu X
    J Chem Phys; 2012 Jan; 136(3):034502. PubMed ID: 22389906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromagnetic transparency by coated spheres with radial anisotropy.
    Gao L; Fung TH; Yu KW; Qiu CW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046609. PubMed ID: 18999553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka.
    Liaw JW; Chen HC; Kuo MK
    Nanoscale Res Lett; 2013 Nov; 8(1):468. PubMed ID: 24206789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattering of core-shell nanowires with the interference of electric and magnetic resonances.
    Liu W; Miroshnichenko AE; Oulton RF; Neshev DN; Hess O; Kivshar YS
    Opt Lett; 2013 Jul; 38(14):2621-4. PubMed ID: 23939129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between near-field and far-field properties of plasmonic Fano resonances.
    Gallinet B; Martin OJ
    Opt Express; 2011 Oct; 19(22):22167-75. PubMed ID: 22109059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting Fano resonances in single layered concentric core-shell particles.
    Sancho-Parramon J; Jelovina D
    Nanoscale; 2014 Nov; 6(22):13555-64. PubMed ID: 25269097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fano resonance by dipole-hexapole coupling in a χ-shaped plasmonic nanostructure.
    Kim KH; Kim SH; Bae MC
    Appl Opt; 2015 Apr; 54(10):2710-4. PubMed ID: 25967180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system.
    Li S; Wang Y; Jiao R; Wang L; Duan G; Yu L
    Opt Express; 2017 Feb; 25(4):3525-3533. PubMed ID: 28241566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings.
    Liu SD; Yang Z; Liu RP; Li XY
    ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-anisotropic Fano resonance in three-dimensional metamaterials.
    Moritake Y; Tanaka T
    Sci Rep; 2018 Jun; 8(1):9012. PubMed ID: 29899415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory.
    Bian X; Gao DL; Gao L
    Opt Express; 2017 Oct; 25(20):24566-24578. PubMed ID: 29041401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators.
    Ren XB; Ren K; Zhang Y; Ming CG; Han Q
    Beilstein J Nanotechnol; 2019; 10():2459-2467. PubMed ID: 31921524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells.
    Chen J; Shen Q; Chen Z; Wang Q; Tang C; Wang Z
    J Chem Phys; 2012 Jun; 136(21):214703. PubMed ID: 22697562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of unconventional Fano-comb resonances in multilayered core-shell nanoparticles.
    Li Y; Zhong F; Ding P; Chen Z; Luo F; Shao L; Du Y; Chen L; Lei M
    Nanotechnology; 2019 Sep; 30(37):375401. PubMed ID: 31195382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of plasmonic Fano resonance in metal-hole/split-ring-resonator metamaterials disclosed by temporal coupled-mode theory.
    Deng Q; Lin H; Li ZY
    Opt Express; 2023 Sep; 31(20):32322-32334. PubMed ID: 37859038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization-selective dynamically tunable multispectral Fano resonances: decomposing of subgroup plasmonic resonances.
    Liu J; Zhao X; Gong R; Wu T; Gong C; Shao X
    Opt Express; 2015 Oct; 23(21):27343-53. PubMed ID: 26480396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.