These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 24104312)
1. Assessment of the flow velocity of blood cells in a microfluidic device using joint spectral and time domain optical coherence tomography. Bukowska DM; Derzsi L; Tamborski S; Szkulmowski M; Garstecki P; Wojtkowski M Opt Express; 2013 Oct; 21(20):24025-38. PubMed ID: 24104312 [TBL] [Abstract][Full Text] [Related]
2. Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography. Moger J; Matcher SJ; Winlove CP; Shore A J Biomed Opt; 2004; 9(5):982-94. PubMed ID: 15447020 [TBL] [Abstract][Full Text] [Related]
3. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography. Werkmeister RM; Dragostinoff N; Palkovits S; Told R; Boltz A; Leitgeb RA; Gröschl M; Garhöfer G; Schmetterer L Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6062-71. PubMed ID: 22893675 [TBL] [Abstract][Full Text] [Related]
4. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography. Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644 [TBL] [Abstract][Full Text] [Related]
5. Scanning protocols dedicated to smart velocity ranging in spectral OCT. Grulkowski I; Gorczynska I; Szkulmowski M; Szlag D; Szkulmowska A; Leitgeb RA; Kowalczyk A; Wojtkowski M Opt Express; 2009 Dec; 17(26):23736-54. PubMed ID: 20052085 [TBL] [Abstract][Full Text] [Related]
6. Relation of joint spectral and time domain optical coherence tomography (jSTdOCT) and phase-resolved Doppler OCT. Walther J; Koch E Opt Express; 2014 Sep; 22(19):23129-46. PubMed ID: 25321783 [TBL] [Abstract][Full Text] [Related]
7. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
8. Measurement of the absolute velocity of blood flow in early-stage chick embryos using spectral domain optical coherence tomography. Ma ZH; Ma YS; Zhao YQ; Liu J; Liu JH; Lv JT; Wang Y Appl Opt; 2017 Nov; 56(31):8832-8837. PubMed ID: 29091702 [TBL] [Abstract][Full Text] [Related]
9. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology. Cense B; Chen TC; Nassif N; Pierce MC; Yun SH; Park BH; Bouma BE; Tearney GJ; de Boer JF Bull Soc Belge Ophtalmol; 2006; (302):123-32. PubMed ID: 17265794 [TBL] [Abstract][Full Text] [Related]
10. An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography. Miura M; Makita S; Iwasaki T; Yasuno Y Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7137-41. PubMed ID: 22997290 [TBL] [Abstract][Full Text] [Related]
11. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography. Schaefer AW; Reynolds JJ; Marks DL; Boppart SA IEEE Trans Biomed Eng; 2004 Jan; 51(1):186-90. PubMed ID: 14723509 [TBL] [Abstract][Full Text] [Related]
12. Shear flow-induced optical inhomogeneity of blood assessed in vivo and in vitro by spectral domain optical coherence tomography in the 1.3 μm wavelength range. Cimalla P; Walther J; Mittasch M; Koch E J Biomed Opt; 2011 Nov; 16(11):116020. PubMed ID: 22112125 [TBL] [Abstract][Full Text] [Related]
13. Higher-order cross-correlation-based Doppler optical coherence tomography. Huang L; Ding Z; Hong W; Wang C; Wu T Opt Lett; 2011 Nov; 36(22):4314-6. PubMed ID: 22089548 [TBL] [Abstract][Full Text] [Related]
14. Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography. Landa G; Garcia PM; Rosen RB Ophthalmologica; 2009; 223(3):155-61. PubMed ID: 19142030 [TBL] [Abstract][Full Text] [Related]
15. Transit-time analysis based on delay-encoded beam shape for velocity vector quantification by spectral-domain Doppler optical coherence tomography. Meng J; Ding Z; Li J; Wang K; Wu T Opt Express; 2010 Jan; 18(2):1261-70. PubMed ID: 20173950 [TBL] [Abstract][Full Text] [Related]
16. Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography. Szkulmowski M; Szkulmowska A; Bajraszewski T; Kowalczyk A; Wojtkowski M Opt Express; 2008 Apr; 16(9):6008-25. PubMed ID: 18545302 [TBL] [Abstract][Full Text] [Related]
17. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Faivre M; Abkarian M; Bickraj K; Stone HA Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784 [TBL] [Abstract][Full Text] [Related]
18. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation. Wu CC; Zhang G; Huang TC; Lin KP Microvasc Res; 2009 Dec; 78(3):319-24. PubMed ID: 19647002 [TBL] [Abstract][Full Text] [Related]