These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 24104401)

  • 1. Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte.
    Kong C; Qian W; Zheng C; Yu Y; Cui C; Wei F
    Chem Commun (Camb); 2013 Nov; 49(91):10727-9. PubMed ID: 24104401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V.
    Cui C; Qian W; Yu Y; Kong C; Yu B; Xiang L; Wei F
    J Am Chem Soc; 2014 Feb; 136(6):2256-9. PubMed ID: 24490623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of ILs as co-salts in electrolytes for high voltage supercapacitors.
    Kwon HN; Jang SJ; Kang YC; Roh KC
    Sci Rep; 2019 Feb; 9(1):1180. PubMed ID: 30718616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-density enhancement of carbon-nanotube-based supercapacitors with redox couple in organic electrolyte.
    Park J; Kim B; Yoo YE; Chung H; Kim W
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19499-503. PubMed ID: 25425124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Few-walled carbon nanotube-enhanced activated carbon supercapacitor performance in organic electrolyte at 4 V.
    Li J; Xu Z
    RSC Adv; 2019 Jun; 9(33):18863-18867. PubMed ID: 35516858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes.
    Kim B; Chung H; Kim W
    Nanotechnology; 2012 Apr; 23(15):155401. PubMed ID: 22437007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes.
    Jiang H; Li C; Sun T; Ma J
    Nanoscale; 2012 Feb; 4(3):807-12. PubMed ID: 22159343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrolyte-Dependent Supercapacitor Performance on Nitrogen-Doped Porous Bio-Carbon from Gelatin.
    Deng J; Li J; Song S; Zhou Y; Li L
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite.
    Izadi-Najafabadi A; Yamada T; Futaba DN; Yudasaka M; Takagi H; Hatori H; Iijima S; Hata K
    ACS Nano; 2011 Feb; 5(2):811-9. PubMed ID: 21210712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7020-6. PubMed ID: 23167563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.
    Kang YJ; Chung H; Han CH; Kim W
    Nanotechnology; 2012 Feb; 23(6):065401. PubMed ID: 22248712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercritical fluid deposition of vanadium oxide on multi-walled carbon nanotube buckypaper for supercapacitor electrode application.
    Do QH; Zeng C; Zhang C; Wang B; Zheng J
    Nanotechnology; 2011 Sep; 22(36):365402. PubMed ID: 21836323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The study of electrical conductivity and diffusion behavior of water-based and ferro/ferricyanide-electrolyte-based alumina nanofluids.
    Liu C; Lee H; Chang YH; Feng SP
    J Colloid Interface Sci; 2016 May; 469():17-24. PubMed ID: 26866885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reversible redox strategy for SWCNT-based supercapacitors using a high-performance electrolyte.
    Yu H; Wu J; Lin J; Fan L; Huang M; Lin Y; Li Y; Yu F; Qiu Z
    Chemphyschem; 2013 Feb; 14(2):394-9. PubMed ID: 23303585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes.
    Shen J; Yang C; Li X; Wang G
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8467-76. PubMed ID: 23931572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.
    Ge J; Cheng G; Chen L
    Nanoscale; 2011 Aug; 3(8):3084-8. PubMed ID: 21738910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes.
    Li P; Kong C; Shang Y; Shi E; Yu Y; Qian W; Wei F; Wei J; Wang K; Zhu H; Cao A; Wu D
    Nanoscale; 2013 Sep; 5(18):8472-9. PubMed ID: 23897061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.