These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24104425)

  • 1. Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure.
    Chriki R; Yanai A; Shappir J; Levy U
    Opt Express; 2013 May; 21 Suppl 3():A382-91. PubMed ID: 24104425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined plasmonic gratings in organic solar cells.
    Shen H; Maes B
    Opt Express; 2011 Nov; 19 Suppl 6():A1202-10. PubMed ID: 22109616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Misaligned conformal gratings enhanced light trapping in thin film silicon solar cells.
    Xia Z; Wu Y; Liu R; Liang Z; Zhou J; Tang P
    Opt Express; 2013 May; 21 Suppl 3():A548-57. PubMed ID: 24104443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations.
    Sefunc MA; Okyay AK; Demir HV
    Opt Express; 2011 Jul; 19(15):14200-9. PubMed ID: 21934783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light trapping in ultrathin plasmonic solar cells.
    Ferry VE; Verschuuren MA; Li HB; Verhagen E; Walters RJ; Schropp RE; Atwater HA; Polman A
    Opt Express; 2010 Jun; 18 Suppl 2():A237-45. PubMed ID: 20588593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption.
    In S; Park N
    Sci Rep; 2016 Feb; 6():21784. PubMed ID: 26902974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light trapping regimes in thin-film silicon solar cells with a photonic pattern.
    Zanotto S; Liscidini M; Andreani LC
    Opt Express; 2010 Mar; 18(5):4260-74. PubMed ID: 20389438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique.
    Schuster CS; Kowalczewski P; Martins ER; Patrini M; Scullion MG; Liscidini M; Lewis L; Reardon C; Andreani LC; Krauss TF
    Opt Express; 2013 May; 21 Suppl 3():A433-9. PubMed ID: 24104431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate.
    Wang W; Cui Y; He Y; Hao Y; Lin Y; Tian X; Ji T; He S
    Opt Lett; 2014 Jan; 39(2):331-4. PubMed ID: 24562139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays.
    Wang W; Zhang J; Che X; Qin G
    Sci Rep; 2016 Oct; 6():34219. PubMed ID: 27703176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.
    Lee S; Mason DR; In S; Park N
    Opt Express; 2014 Jun; 22 Suppl 4():A1145-52. PubMed ID: 24978077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fano-like coupling between two oppositely enhanced processes by diffraction in a dielectric grating.
    Zhang J; Zhang X
    Opt Express; 2015 Nov; 23(23):30429-37. PubMed ID: 26698522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bringing some photonic structures for solar cells to the fore.
    Escoubas L; Simon JJ; Torchio P; Duché D; Vedraine S; Vervisch W; Le Rouzo J; Flory F; Rivière G; Yeabiyo G; Derbal H
    Appl Opt; 2011 Mar; 50(9):C329-39. PubMed ID: 21460960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incident angle dependence of absorption enhancement in plasmonic solar cells.
    Yang M; Fu Z; Lin F; Zhu X
    Opt Express; 2011 Jul; 19 Suppl 4():A763-71. PubMed ID: 21747545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.
    Bozzola A; Liscidini M; Andreani LC
    Opt Express; 2012 Mar; 20 Suppl 2():A224-44. PubMed ID: 22418672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption efficiency enhancement in inorganic and organic thin film solar cells via plasmonic honeycomb nanoantenna arrays.
    Tok RU; Sendur K
    Opt Lett; 2013 Aug; 38(16):3119-22. PubMed ID: 24104664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.