These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Coupling of light into nanowire arrays and subsequent absorption. Anttu N; Xu HQ J Nanosci Nanotechnol; 2010 Nov; 10(11):7183-7. PubMed ID: 21137893 [TBL] [Abstract][Full Text] [Related]
3. Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays. Anttu N Opt Lett; 2013 Mar; 38(5):730-2. PubMed ID: 23455280 [TBL] [Abstract][Full Text] [Related]
4. Absorption of light in a single vertical nanowire and a nanowire array. Anttu N Nanotechnology; 2019 Mar; 30(10):104004. PubMed ID: 30572314 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of absorption in vertically and laterally oriented InP core-shell nanowire photovoltaic devices. Nowzari A; Heurlin M; Jain V; Storm K; Hosseinnia A; Anttu N; Borgström MT; Pettersson H; Samuelson L Nano Lett; 2015 Mar; 15(3):1809-14. PubMed ID: 25671437 [TBL] [Abstract][Full Text] [Related]
6. Optical response of wurtzite and zinc blende GaP nanowire arrays. Aghaeipour M; Anttu N; Nylund G; Berg A; Lehmann S; Pistol ME Opt Express; 2015 Nov; 23(23):30177-87. PubMed ID: 26698498 [TBL] [Abstract][Full Text] [Related]
7. Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning. Wu PM; Anttu N; Xu HQ; Samuelson L; Pistol ME Nano Lett; 2012 Apr; 12(4):1990-5. PubMed ID: 22409436 [TBL] [Abstract][Full Text] [Related]
10. Tunable absorption resonances in the ultraviolet for InP nanowire arrays. Aghaeipour M; Anttu N; Nylund G; Samuelson L; Lehmann S; Pistol ME Opt Express; 2014 Nov; 22(23):29204-12. PubMed ID: 25402159 [TBL] [Abstract][Full Text] [Related]
11. Enhanced absorption in silicon nanocone arrays for photovoltaics. Wang B; Leu PW Nanotechnology; 2012 May; 23(19):194003. PubMed ID: 22538835 [TBL] [Abstract][Full Text] [Related]
12. Design for strong absorption in a nanowire array tandem solar cell. Chen Y; Pistol ME; Anttu N Sci Rep; 2016 Aug; 6():32349. PubMed ID: 27574019 [TBL] [Abstract][Full Text] [Related]
15. Investigation of light-matter interaction in single vertical nanowires in ordered nanowire arrays. Li Z; Li L; Wang F; Xu L; Gao Q; Alabadla A; Peng K; Vora K; Hattori HT; Tan HH; Jagadish C; Fu L Nanoscale; 2022 Mar; 14(9):3527-3536. PubMed ID: 35171176 [TBL] [Abstract][Full Text] [Related]
16. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting. Wu D; Tang X; Wang K; He Z; Li X Nanoscale Res Lett; 2017 Nov; 12(1):604. PubMed ID: 29177708 [TBL] [Abstract][Full Text] [Related]
17. Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications. Anttu N; Dagytė V; Zeng X; Otnes G; Borgström M Nanotechnology; 2017 May; 28(20):205203. PubMed ID: 28436381 [TBL] [Abstract][Full Text] [Related]
18. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis. Chen Y; Kivisaari P; Pistol ME; Anttu N Nanotechnology; 2018 Jan; 29(4):045401. PubMed ID: 29189204 [TBL] [Abstract][Full Text] [Related]
19. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling. Chen Y; Kivisaari P; Pistol ME; Anttu N Nanotechnology; 2016 Oct; 27(43):435404. PubMed ID: 27659909 [TBL] [Abstract][Full Text] [Related]
20. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. Diedenhofen SL; Janssen OT; Grzela G; Bakkers EP; Gómez Rivas J ACS Nano; 2011 Mar; 5(3):2316-23. PubMed ID: 21366282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]