These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24104498)

  • 21. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids.
    Mendes MJ; Morawiec S; Mateus T; Lyubchyk A; Águas H; Ferreira I; Fortunato E; Martins R; Priolo F; Crupi I
    Nanotechnology; 2015 Mar; 26(13):135202. PubMed ID: 25760231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.
    Ha K; Jang E; Jang S; Lee JK; Jang MS; Choi H; Cho JS; Choi M
    Nanotechnology; 2016 Feb; 27(5):055403. PubMed ID: 26751935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectric nanostructures for broadband light trapping in organic solar cells.
    Raman A; Yu Z; Fan S
    Opt Express; 2011 Sep; 19(20):19015-26. PubMed ID: 21996842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors.
    Morawiec S; Mendes MJ; Filonovich SA; Mateus T; Mirabella S; Aguas H; Ferreira I; Simone F; Fortunato E; Martins R; Priolo F; Crupi I
    Opt Express; 2014 Jun; 22 Suppl 4():A1059-70. PubMed ID: 24978069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light trapping limits in plasmonic solar cells: an analytical investigation.
    Sheng X; Hu J; Michel J; Kimerling LC
    Opt Express; 2012 Jul; 20 Suppl 4():A496-501. PubMed ID: 22828618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing solar cells with localized plasmons in nanovoids.
    Lal NN; Soares BF; Sinha JK; Huang F; Mahajan S; Bartlett PN; Greenham NC; Baumberg JJ
    Opt Express; 2011 Jun; 19(12):11256-63. PubMed ID: 21716355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-broadband performance enhancement of thin-film amorphous silicon solar cells with conformal zig-zag configuration.
    Yang Z; Shang A; Zhan Y; Zhang C; Li X
    Opt Lett; 2013 Dec; 38(23):5071-4. PubMed ID: 24281512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell.
    Kiani A; Venkatakrishnan K; Tan B
    Opt Express; 2014 Jan; 22 Suppl 1():A120-31. PubMed ID: 24921988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Turning on plasmonic lattice modes in metallic nanoantenna arrays via silicon thin films.
    Sadeghi SM; Gutha RR; Wing WJ
    Opt Lett; 2016 Jul; 41(14):3367-70. PubMed ID: 27420537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells.
    Wang E; White TP; Catchpole KR
    Opt Express; 2012 Jun; 20(12):13226-37. PubMed ID: 22714351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells.
    Paetzold UW; Moulin E; Pieters BE; Carius R; Rau U
    Opt Express; 2011 Nov; 19 Suppl 6():A1219-30. PubMed ID: 22109618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large Absorption Enhancement in Ultrathin Solar Cells Patterned by Metallic Nanocavity Arrays.
    Wang W; Zhang J; Che X; Qin G
    Sci Rep; 2016 Oct; 6():34219. PubMed ID: 27703176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light Trapping Enhancement in a Thin Film with 2D Conformal Periodic Hexagonal Arrays.
    Yang X; Zhou S; Wang D; He J; Zhou J; Li X; Gao P; Ye J
    Nanoscale Res Lett; 2015 Dec; 10(1):988. PubMed ID: 26153124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells.
    Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light trapping in thin-film silicon solar cells with submicron surface texture.
    Dewan R; Marinkovic M; Noriega R; Phadke S; Salleo A; Knipp D
    Opt Express; 2009 Dec; 17(25):23058-65. PubMed ID: 20052232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement.
    Song YM; Yu JS; Lee YT
    Opt Lett; 2010 Feb; 35(3):276-8. PubMed ID: 20125693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.