BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24104583)

  • 1. Increased upconversion quantum yield in photonic structures due to local field enhancement and modification of the local density of states--a simulation-based analysis.
    Herter B; Wolf S; Fischer S; Gutmann J; Bläsi B; Goldschmidt JC
    Opt Express; 2013 Sep; 21 Suppl 5():A883-900. PubMed ID: 24104583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upconversion in a Bragg structure: photonic effects of a modified local density of states and irradiance on luminescence and upconversion quantum yield.
    Hofmann CL; Herter B; Fischer S; Gutmann J; Goldschmidt JC
    Opt Express; 2016 Jun; 24(13):14895-914. PubMed ID: 27410641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced upconversion quantum yield near spherical gold nanoparticles - a comprehensive simulation based analysis.
    Fischer S; Kumar D; Hallermann F; von Plessen G; Goldschmidt JC
    Opt Express; 2016 Mar; 24(6):A460-75. PubMed ID: 27136867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of a modeling framework for upconversion enhancement in 1D-photonic crystals.
    Hofmann CLM; Fischer S; Eriksen EH; Bläsi B; Reitz C; Yazicioglu D; Howard IA; Richards BS; Goldschmidt JC
    Nat Commun; 2021 Jan; 12(1):104. PubMed ID: 33397918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced upconversion in one-dimensional photonic crystals: a simulation-based assessment within realistic material and fabrication constraints.
    Hofmann CLM; Eriksen EH; Fischer S; Richards BS; Balling P; Goldschmidt JC
    Opt Express; 2018 Mar; 26(6):7537-7554. PubMed ID: 29609308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions.
    Fischer S; Hallermann F; Eichelkraut T; von Plessen G; Krämer KW; Biner D; Steinkemper H; Hermle M; Goldschmidt JC
    Opt Express; 2012 Jan; 20(1):271-82. PubMed ID: 22274350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving triplet-triplet-annihilation based upconversion systems by tuning their topological structure.
    Zimmermann J; Mulet R; Scholes GD; Wellens T; Buchleitner A
    J Chem Phys; 2014 Nov; 141(18):184104. PubMed ID: 25399129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon enhancement of luminescence upconversion.
    Park W; Lu D; Ahn S
    Chem Soc Rev; 2015 May; 44(10):2940-62. PubMed ID: 25853439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon-Enhanced Upconversion.
    Wu DM; García-Etxarri A; Salleo A; Dionne JA
    J Phys Chem Lett; 2014 Nov; 5(22):4020-31. PubMed ID: 26276488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.
    Johnson CM; Reece PJ; Conibeer GJ
    Opt Lett; 2011 Oct; 36(20):3990-2. PubMed ID: 22002362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of upconversion and near infrared emission properties in CeO₂: Er³⁺, Yb³⁺ inverse opals.
    Wu H; Yang Z; Liao J; Lai S; Qiu J; Song Z; Yang Y; Zhou D; Yin Z
    Opt Express; 2013 Sep; 21(19):22186-93. PubMed ID: 24104110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities.
    Liu H; Xu CT; Lindgren D; Xie H; Thomas D; Gundlach C; Andersson-Engels S
    Nanoscale; 2013 Jun; 5(11):4770-5. PubMed ID: 23604490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Efficient Photon Upconversion in Semiconductor Heterostructures.
    Milleville CC; Chen EY; Lennon KR; Cleveland JM; Kumar A; Zhang J; Bork JA; Tessier A; LeBeau JM; Chase DB; Zide JMO; Doty MF
    ACS Nano; 2019 Jan; 13(1):489-497. PubMed ID: 30576110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals.
    Yang Z; Zhu K; Song Z; Zhou D; Yin Z; Qiu J
    Appl Opt; 2011 Jan; 50(3):287-90. PubMed ID: 21263723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities.
    Thijssen AC; Cryan MJ; Rarity JG; Oulton R
    Opt Express; 2012 Sep; 20(20):22412-28. PubMed ID: 23037390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Er(3+)/Yb(3+) upconverters for InGaP solar cells under concentrated broadband illumination.
    Feenstra J; Six IF; Asselbergs MA; van Leest RH; de Wild J; Meijerink A; Schropp RE; Rowan AE; Schermer JJ
    Phys Chem Chem Phys; 2015 May; 17(17):11234-43. PubMed ID: 25834845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals.
    Senden T; Rabouw FT; Meijerink A
    ACS Nano; 2015 Feb; 9(2):1801-8. PubMed ID: 25584627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsphere Photonic Superlens for a Highly Emissive Flexible Upconversion-Nanoparticle-Embedded Film.
    Yan Y; He J; Wang M; Yang L; Jiang Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24636-24647. PubMed ID: 35580230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting.
    Monguzzi A; Oertel A; Braga D; Riedinger A; Kim DK; Knüsel PN; Bianchi A; Mauri M; Simonutti R; Norris DJ; Meinardi F
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40180-40186. PubMed ID: 29083152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photon correlation in single-photon frequency upconversion.
    Gu X; Huang K; Pan H; Wu E; Zeng H
    Opt Express; 2012 Jan; 20(3):2399-407. PubMed ID: 22330478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.