These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24104848)

  • 1. Dual-wavelength laser speckle imaging to simultaneously access blood flow, blood volume, and oxygenation using a color CCD camera.
    Wang J; Wang Y; Li B; Feng D; Lu J; Luo Q; Li P
    Opt Lett; 2013 Sep; 38(18):3690-2. PubMed ID: 24104848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-spectral laser speckle contrast images using a wavelength-swept laser.
    Kim JW; Jang H; Kim GH; Jun SW; Kim CS
    J Biomed Opt; 2019 Jul; 24(7):1-9. PubMed ID: 31290292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging.
    Feng N; Qiu J; Li P; Sun X; Yin C; Luo W; Chen S; Luo Q
    Opt Express; 2011 Aug; 19(17):15777-91. PubMed ID: 21934940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extendable, large-field multi-modal optical imaging system for measuring tissue hemodynamics.
    Wang C; Chen X; Hong J; Meng L; Cheng W; Zhu X; Lu J; Li P
    Biomed Opt Express; 2020 May; 11(5):2339-2351. PubMed ID: 32499927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep tissue flowmetry based on diffuse speckle contrast analysis.
    Bi R; Dong J; Lee K
    Opt Lett; 2013 May; 38(9):1401-3. PubMed ID: 23632498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-exposure laser speckle contrast imaging using a high frame rate CMOS sensor with a field programmable gate array.
    Sun S; Hayes-Gill BR; He D; Zhu Y; Morgan SP
    Opt Lett; 2015 Oct; 40(20):4587-90. PubMed ID: 26469570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging.
    Sun X; Wang Y; Chen S; Luo W; Li P; Luo Q
    Neuroimage; 2011 Aug; 57(3):873-84. PubMed ID: 21624475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparameter wide-field integrated optical imaging system-based spatially modulated illumination and laser speckles in model of tissue injuries.
    Bloygrund H; Franjy-Tal Y; Rosenzweig T; Abookasis D
    J Biophotonics; 2019 Oct; 12(10):e201900141. PubMed ID: 31187933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary experience for the evaluation of the intraoperative graft patency with real color charge-coupled device camera system: an advanced device for simultaneous capturing of color and near-infrared images during coronary artery bypass graft.
    Handa T; Katare RG; Sasaguri S; Sato T
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):150-4. PubMed ID: 19423513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraoperative combined color and fluorescent images-based sentinel node mapping in the porcine lung: comparison of indocyanine green with or without albumin premixing.
    Oh Y; Quan YH; Choi Y; Kim CK; Kim H; Kim HK; Kim BM
    J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1509-15. PubMed ID: 23522603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous multi-color optical sectioning fluorescence microscopy with wavelength-coded volume holographic gratings.
    Chia YH; Yeh JA; Huang YY; Luo Y
    Opt Express; 2020 Dec; 28(25):37177-37187. PubMed ID: 33379556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-view imaging system using a wide-range dichroic mirror for simultaneous four-color single-molecule detection.
    Haga T; Takahashi S; Sonehara T; Kumazaki N; Anazawa T
    Anal Chem; 2011 Sep; 83(18):6948-55. PubMed ID: 21805964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-cost laser speckle contrast imaging of blood flow using a webcam.
    Richards LM; Kazmi SM; Davis JL; Olin KE; Dunn AK
    Biomed Opt Express; 2013; 4(10):2269-83. PubMed ID: 24156082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomic hybridization imaging by the one-chip true-color CCD camera kappa CF 15 MC.
    Bornfleth H; Aldinger K; Hausmann M; Jauch A; Cremer C
    Cytometry; 1996 May; 24(1):1-13. PubMed ID: 8723897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser speckle imaging using a consumer-grade color camera.
    Yang O; Choi B
    Opt Lett; 2012 Oct; 37(19):3957-9. PubMed ID: 23027244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-trial estimation of the cerebral metabolic rate of oxygen with imaging photoplethysmography and laser speckle contrast imaging.
    Lu H; Li Y; Li H; Yuan L; Liu Q; Sun Y; Tong S
    Opt Lett; 2015 Apr; 40(7):1193-6. PubMed ID: 25831290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a portable phantom device to simulate tissue oxygenation and blood perfusion.
    Lv X; Chen H; Liu G; Shen S; Wu Q; Hu C; Li J; Dong E; Xu RX
    Appl Opt; 2018 May; 57(14):3938-3946. PubMed ID: 29791363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the reflectance of hidden color objects with acoustically modulated laser speckle.
    Leung TS; Jiang S
    Opt Lett; 2012 Oct; 37(19):4092-4. PubMed ID: 23027289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo burn diagnosis by camera-phone diffuse reflectance laser speckle detection.
    Ragol S; Remer I; Shoham Y; Hazan S; Willenz U; Sinelnikov I; Dronov V; Rosenberg L; Bilenca A
    Biomed Opt Express; 2016 Jan; 7(1):225-37. PubMed ID: 26819831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of simple diffuse optical metabolic spectroscopy for tissue metabolism measurement.
    Kim S; Kim M; Kim JG
    Biomed Opt Express; 2019 Jun; 10(6):2956-2966. PubMed ID: 31259065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.