These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 24104848)

  • 21. Use of laser speckle flowgraphy in ocular blood flow research.
    Sugiyama T; Araie M; Riva CE; Schmetterer L; Orgul S
    Acta Ophthalmol; 2010 Nov; 88(7):723-9. PubMed ID: 19725814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-beam imaging for online verification of radiotherapy field placement.
    Jaffray DA; Chawla K; Yu C; Wong JW
    Int J Radiat Oncol Biol Phys; 1995 Dec; 33(5):1273-80. PubMed ID: 7493852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement.
    Sawosz P; Kacprzak M; Weigl W; Borowska-Solonynko A; Krajewski P; Zolek N; Ciszek B; Maniewski R; Liebert A
    Phys Med Biol; 2012 Dec; 57(23):7973-81. PubMed ID: 23154664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates, and enhanced features.
    Gelderblom EC; Vos HJ; Mastik F; Faez T; Luan Y; Kokhuis TJ; van der Steen AF; Lohse D; de Jong N; Versluis M
    Rev Sci Instrum; 2012 Oct; 83(10):103706. PubMed ID: 23126773
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    Skin Res Technol; 2013 Feb; 19(1):20-6. PubMed ID: 22724585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of bladder urothelial carcinoma using in vivo noncontact, ultraviolet excited autofluorescence measurements converted into simple color coded images: a feasibility study.
    Schäfauer C; Ettori D; Rouprêt M; Phé V; Tualle JM; Tinet E; Avrillier S; Egrot C; Traxer O; Cussenot O
    J Urol; 2013 Jul; 190(1):271-7. PubMed ID: 23391471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speckle reduction using multiple tones of illumination.
    George N; Jain A
    Appl Opt; 1973 Jun; 12(6):1202-12. PubMed ID: 20125502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo label-free microangiography by laser speckle imaging with intensity fluctuation modulation.
    Wang M; Zeng Y; Liang X; Feng G; Lu X; Chen J; Han D; Yang G
    J Biomed Opt; 2013 Dec; 18(12):126001. PubMed ID: 24296997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous measurements of tissue blood flow and oxygenation using a wearable fiber-free optical sensor.
    Liu X; Gu Y; Huang C; Zhao M; Cheng Y; Abu Jawdeh EG; Bada HS; Chen L; Yu G
    J Biomed Opt; 2021 Jan; 26(1):. PubMed ID: 33515216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous measurement of in-plane and out-of-plane displacement derivatives using dual-wavelength digital holographic interferometry.
    Rajshekhar G; Gorthi SS; Rastogi P
    Appl Opt; 2011 Dec; 50(34):H16-21. PubMed ID: 22193002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow.
    Zhang H; Li P; Feng N; Qiu J; Li B; Luo W; Luo Q
    Opt Express; 2012 Jan; 20(1):508-17. PubMed ID: 22274372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directly measuring absolute flow speed by frequency-domain laser speckle imaging.
    Li H; Liu Q; Lu H; Li Y; Zhang HF; Tong S
    Opt Express; 2014 Aug; 22(17):21079-87. PubMed ID: 25321308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights into image processing of cortical blood flow monitors using laser speckle imaging.
    Le Thinh M; Paul JS; Al-Nashash H; Tan A; Luft AR; Sheu FS; Ong SH
    IEEE Trans Med Imaging; 2007 Jun; 26(6):833-42. PubMed ID: 17679334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Portable laser speckle perfusion imaging system based on digital signal processor.
    Tang X; Feng N; Sun X; Li P; Luo Q
    Rev Sci Instrum; 2010 Dec; 81(12):125110. PubMed ID: 21198054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laser Speckle Contrast Imaging: theory, instrumentation and applications.
    Senarathna J; Rege A; Li N; Thakor NV
    IEEE Rev Biomed Eng; 2013; 6():99-110. PubMed ID: 23372086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-mode imaging of cutaneous tissue oxygenation and vascular function.
    Xu RX; Huang K; Qin R; Huang J; Xu JS; Ding L; Gnyawali US; Gordillo GM; Gnyawali SC; Sen CK
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21178967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperspectral imaging: a new approach to the diagnosis of hemorrhagic shock.
    Cancio LC; Batchinsky AI; Mansfield JR; Panasyuk S; Hetz K; Martini D; Jordan BS; Tracey B; Freeman JE
    J Trauma; 2006 May; 60(5):1087-95. PubMed ID: 16688075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wavelength decorrelation of speckle in propagation through a thick diffuser.
    Chang NA; George N; Chi W
    J Opt Soc Am A Opt Image Sci Vis; 2011 Feb; 28(2):245-54. PubMed ID: 21293529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active DLP hyperspectral illumination: a noninvasive, in vivo, system characterization visualizing tissue oxygenation at near video rates.
    Zuzak KJ; Francis RP; Wehner EF; Litorja M; Cadeddu JA; Livingston EH
    Anal Chem; 2011 Oct; 83(19):7424-30. PubMed ID: 21842837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.