These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 241051)

  • 1. Effects of pH and ionic strength on the potassium system in the internally perfused giant barnacle muscle fibre.
    Lakshminarayanaiah N; Rojas E
    Pflugers Arch; 1975 Aug; 358(4):349-66. PubMed ID: 241051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of anions and cations on the resting membrane potential of internally perfused barnacle muscle fibres.
    Lakshminarayanaiah N; Rojas E
    J Physiol; 1973 Sep; 233(3):613-34. PubMed ID: 4754874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control.
    Keynes RD; Rojas E; Taylor RE; Vergara J
    J Physiol; 1973 Mar; 229(2):409-55. PubMed ID: 4724831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium influxes and tension development in perfused single barnacle muscle fibres under membrane potential control.
    Atwater I; Rojas E; Vergara J
    J Physiol; 1974 Dec; 243(2):523-51. PubMed ID: 4449073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium carrying system in the giant muscle fibre of the barnacle species, Balanus nubilus.
    Beirao PS; Lakshminarayanaiah N
    J Physiol; 1979 Aug; 293():319-27. PubMed ID: 41091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle.
    Hagiwara S; Gruener R; Hayashi H; Sakata H; Grinnell AD
    J Gen Physiol; 1968 Nov; 52(5):773-92. PubMed ID: 5688083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres.
    Bittar EE; Hift H; Huddart H; Tong E
    J Physiol; 1974 Oct; 242(1):1-34. PubMed ID: 4373569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle.
    Bolton TB; Vaughan-Jones RD
    J Physiol; 1977 Sep; 270(3):801-33. PubMed ID: 20501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some electrical properties of the membrane of the barnacle muscle fibers under internal perfusion.
    Murayama K; Lakshminarayanaiah N
    J Membr Biol; 1977 Jul; 35(3):257-83. PubMed ID: 407363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius muscle.
    Standen NB; Stanfield PR
    J Physiol; 1979 Sep; 294():497-520. PubMed ID: 512954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THE EFFECTS OF VARIOUS IONS ON RESTING AND SPIKE POTENTIALS OF BARNACLE MUSCLE FIBERS.
    HAGIWARA S; CHICHIBU S; NAKA KI
    J Gen Physiol; 1964 Sep; 48(1):163-79. PubMed ID: 14212147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate and chloride ions have different permeation pathways in skeletal muscle fibers of Rana pipiens.
    Kotsias BA; Horowicz P
    J Membr Biol; 1990 Apr; 115(1):95-108. PubMed ID: 2159521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intracellular pH of frog skeletal muscle: its regulation in isotonic solutions.
    Abercrombie RF; Putnam RW; Roos A
    J Physiol; 1983 Dec; 345():175-87. PubMed ID: 6420546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon dioxide, membrane potential and intracellular potassium activity in frog skeletal muscle.
    Huguenin F; Reber W; Zeuthen T
    J Physiol; 1980 Jun; 303():139-52. PubMed ID: 6776259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of extracellular calcium in triggering contraction in muscle fibres from barnacle under membrane potential control.
    Hidalgo J; Luxoro M; Rojas E
    J Physiol; 1979 Mar; 288():313-30. PubMed ID: 469720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig.
    Kitamura K; Kuriyama H
    J Physiol; 1979 Aug; 293():119-33. PubMed ID: 501578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloride fluxes in isolated dialyzed barnacle muscle fibers.
    DiPolo R
    J Gen Physiol; 1972 Oct; 60(4):471-97. PubMed ID: 5074810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ion conductance changes and of the sodium-pump in adrenaline-induced hyperpolarization of rat diaphragm muscle fibres.
    Kuba K; Nohmi M
    Br J Pharmacol; 1987 Jul; 91(3):671-81. PubMed ID: 2440508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium and potassium currents of the membrane of a barnacle muscle fibre in relation to the calcium spike.
    Hagiwara S; Hayashi H; Takahashi K
    J Physiol; 1969 Nov; 205(1):115-29. PubMed ID: 5347712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.