BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2410521)

  • 1. [Antigenicity of alumina ceramic and calcium phosphate ceramics--genetic control of the immune response].
    Nagase M
    Nihon Seikeigeka Gakkai Zasshi; 1985 Feb; 59(2):183-91. PubMed ID: 2410521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies.
    Nade S; Armstrong L; McCartney E; Baggaley B
    Clin Orthop Relat Res; 1983 Dec; (181):255-63. PubMed ID: 6315286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of bone marrow cells on porous ceramics in vitro.
    Uchida A; Nade S; McCartney E; Ching W
    J Biomed Mater Res; 1987 Jan; 21(1):1-10. PubMed ID: 3558435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immunological study of tricalcium phosphate supplied by three different manufacturers.
    Sasaoka K; Seto K; Tsugita M; Tsuru S
    J Clin Lab Immunol; 1989 Dec; 30(4):197-202. PubMed ID: 2642175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium phosphate materials containing alumina: Raman spectroscopical, histological, and ultrastructural study.
    Bertoluzza A; Simoni R; Tinti A; Morocutti M; Ottani V; Ruggeri A
    J Biomed Mater Res; 1991 Jan; 25(1):23-38. PubMed ID: 2019610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioresorption of ceramic strontium-85-labeled calcium phosphate implants in dog femora. A pilot study to quantitate bioresorption of ceramic implants of hydroxyapatite and tricalcium orthophosphate in vivo.
    Renooij W; Hoogendoorn HA; Visser WJ; Lentferink RH; Schmitz MG; Van Ieperen H; Oldenburg SJ; Janssen WM; Akkermans LM; Wittebol P
    Clin Orthop Relat Res; 1985; (197):272-85. PubMed ID: 4017341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strengthening of bone-implant interface by the use of granule coatings on alumina ceramics.
    Kakutani Y; Yamamuro T; Nakamura T; Kotoura Y
    J Biomed Mater Res; 1989 Jul; 23(7):781-808. PubMed ID: 2738088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramic implants in otologic surgery.
    Plester D; Jahnke K
    Am J Otol; 1981 Oct; 3(2):104-8. PubMed ID: 7304719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna.
    Grundel RE; Chapman MW; Yee T; Moore DC
    Clin Orthop Relat Res; 1991 May; (266):244-58. PubMed ID: 1850335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution.
    Ducheyne P; Radin S; King L
    J Biomed Mater Res; 1993 Jan; 27(1):25-34. PubMed ID: 8380596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora.
    Kawamura H; Ito A; Muramatsu T; Miyakawa S; Ochiai N; Tateishi T
    J Biomed Mater Res A; 2003 Jun; 65(4):468-74. PubMed ID: 12761837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Obliteration of the mastoid cavity with porous tricalcium phosphate ceramic. Results 12 and 18 months after ceramic implantation in the hypotympanon of the pig].
    Zöllner C; Strutz J; Beck C; Büsing CM; Jahnke K; Heimke G
    Laryngol Rhinol Otol (Stuttg); 1983 Mar; 62(3):106-11. PubMed ID: 6843237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone ingrowth into three different porous ceramics implanted into the tibia of rats and rabbits.
    Uchida A; Nade S; McCartney E; Ching W
    J Orthop Res; 1985; 3(1):65-77. PubMed ID: 2984392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics.
    Ito A; Ojima K; Naito H; Ichinose N; Tateishi T
    J Biomed Mater Res; 2000 May; 50(2):178-83. PubMed ID: 10679682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophages in degradation of collagen/hydroxylapatite(CHA), beta-tricalcium phosphate ceramics (TCP) artificial bone graft. An in vivo study.
    Xia ZD; Zhu TB; Du JY; Zheng QX; Wang L; Li SP; Chang CY; Fang SY
    Chin Med J (Engl); 1994 Nov; 107(11):845-9. PubMed ID: 7867393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice.
    Barradas AM; Yuan H; van der Stok J; Le Quang B; Fernandes H; Chaterjea A; Hogenes MC; Shultz K; Donahue LR; van Blitterswijk C; de Boer J
    Biomaterials; 2012 Aug; 33(23):5696-705. PubMed ID: 22594974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of biocompatibility of various ceramic powders with human fibroblasts in vitro.
    Li J; Liu Y; Hermansson L; Söremark R
    Clin Mater; 1993; 12(4):197-201. PubMed ID: 10148856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response of peritoneal macrophages after implantation of several ceramics as measured by the change of ectoenzyme activity.
    Otto B; Ogilvie A
    Biomaterials; 1998 Jun; 19(11-12):1049-55. PubMed ID: 9692803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Tonak M; Lorenz H; Helbig L; Weiss S; Fellenberg J; Leo A; Simank HG; Richter W
    Biomaterials; 2005 Oct; 26(29):5879-89. PubMed ID: 15913762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.