These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24105418)

  • 1. Effect of para halogen modification of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamides on metabolism and clearance.
    Kim J; Coss CC; Dalton JT
    Arch Pharm Res; 2014 Nov; 37(11):1464-76. PubMed ID: 24105418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The para substituent of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamides is a major structural determinant of in vivo disposition and activity of selective androgen receptor modulators.
    Kim J; Wu D; Hwang DJ; Miller DD; Dalton JT
    J Pharmacol Exp Ther; 2005 Oct; 315(1):230-9. PubMed ID: 15987833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo metabolism and final disposition of a novel nonsteroidal androgen in rats and dogs.
    Perera MA; Yin D; Wu D; Chan KK; Miller DD; Dalton J
    Drug Metab Dispos; 2006 Oct; 34(10):1713-21. PubMed ID: 16815963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacokinetics and metabolism of a selective androgen receptor modulator in rats: implication of molecular properties and intensive metabolic profile to investigate ideal pharmacokinetic characteristics of a propanamide in preclinical study.
    Wu D; Wu Z; Yang J; Nair VA; Miller DD; Dalton JT
    Drug Metab Dispos; 2006 Mar; 34(3):483-94. PubMed ID: 16381665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interspecies differences in pharmacokinetics and metabolism of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethylphenyl)-propionamide: the role of N-acetyltransferase.
    Gao W; Johnston JS; Miller DD; Dalton JT
    Drug Metab Dispos; 2006 Feb; 34(2):254-60. PubMed ID: 16272403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo structure-activity relationships of novel androgen receptor ligands with multiple substituents in the B-ring.
    Chen J; Hwang DJ; Chung K; Bohl CE; Fisher SJ; Miller DD; Dalton JT
    Endocrinology; 2005 Dec; 146(12):5444-54. PubMed ID: 16166218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct determination of the ratio of unbound fraction in plasma to unbound fraction in microsomal system (fu p/fu mic) for refined prediction of phase I mediated metabolic hepatic clearance.
    Deshmukh SV; Harsch A
    J Pharmacol Toxicol Methods; 2011; 63(1):35-9. PubMed ID: 20433934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective androgen receptor modulators: in vitro and in vivo metabolism and analysis.
    de Rijke E; Essers ML; Rijk JC; Thevis M; Bovee TF; van Ginkel LA; Sterk SS
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(9):1517-26. PubMed ID: 23883284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption, distribution, metabolism and excretion of the novel SARM GTx-024 [(S)-N-(4-cyano-3-(trifluoromethyl)phenyl)-3-(4-cyanophenoxy)-2-hydroxy-2-methylpropanamide] in rats.
    Kim J; Wang R; Veverka KA; Dalton JT
    Xenobiotica; 2013 Nov; 43(11):993-1009. PubMed ID: 24074268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the in vitro metabolism of selective androgen receptor modulator using human, rat, and dog liver enzyme preparations.
    Gao W; Wu Z; Bohl CE; Yang J; Miller DD; Dalton JT
    Drug Metab Dispos; 2006 Feb; 34(2):243-53. PubMed ID: 16272404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetics, biodistribution and metabolism of a novel selective androgen receptor modulator designed for prostate cancer imaging.
    Yang J; Wu Z; Wu D; Darby MV; Hong SS; Miller DD; Dalton JT
    Int J Oncol; 2010 Jan; 36(1):213-22. PubMed ID: 19956850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical practical aspects in the application of liquid chromatography-mass spectrometric studies for the characterization of impurities and degradation products.
    Narayanam M; Handa T; Sharma P; Jhajra S; Muthe PK; Dappili PK; Shah RP; Singh S
    J Pharm Biomed Anal; 2014 Jan; 87():191-217. PubMed ID: 23706957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol.
    Obach RS
    Drug Metab Dispos; 1997 Dec; 25(12):1359-69. PubMed ID: 9394025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of in vitro metabolic stability, plasma protein binding, and pharmacokinetics of E- and Z-guggulsterone in rat.
    Chhonker YS; Chandasana H; Mukkavilli R; Prasad YD; Laxman TS; Vangala S; Bhatta RS
    Drug Test Anal; 2016 Sep; 8(9):966-75. PubMed ID: 26608935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism, excretion, and pharmacokinetics of ((3,3-difluoropyrrolidin-1-yl)((2S,4S)-4-(4-(pyrimidin-2-yl)piperazin-1-yl)pyrrolidin-2-yl)methanone, a dipeptidyl peptidase inhibitor, in rat, dog and human.
    Sharma R; Sun H; Piotrowski DW; Ryder TF; Doran SD; Dai H; Prakash C
    Drug Metab Dispos; 2012 Nov; 40(11):2143-61. PubMed ID: 22896728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidation of the Phase I and Phase II metabolic pathways of (±)-4'-methylmethcathinone (4-MMC) and (±)-4'-(trifluoromethyl)methcathinone (4-TFMMC) in rat liver hepatocytes using LC-MS and LC-MS².
    Khreit OI; Grant MH; Zhang T; Henderson C; Watson DG; Sutcliffe OB
    J Pharm Biomed Anal; 2013 Jan; 72():177-85. PubMed ID: 22985528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism and excretion of a new antianxiety drug candidate, CP-93,393, in cynomolgus monkeys: identification of the novel pyrimidine ring cleaved metabolites.
    Prakash C; Cui D
    Drug Metab Dispos; 1997 Dec; 25(12):1395-406. PubMed ID: 9394030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacokinetics of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro- 3-trifluoromethyl-phenyl)-propionamide in rats, a non-steroidal selective androgen receptor modulator.
    Kearbey JD; Wu D; Gao W; Miller DD; Dalton JT
    Xenobiotica; 2004 Mar; 34(3):273-80. PubMed ID: 15204699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.
    Bohl CE; Wu Z; Chen J; Mohler ML; Yang J; Hwang DJ; Mustafa S; Miller DD; Bell CE; Dalton JT
    Bioorg Med Chem Lett; 2008 Oct; 18(20):5567-70. PubMed ID: 18805694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender differences in the metabolism and pharmacokinetics of the experimental anticancer agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA).
    Zhou S; Kestell P; Tingle MD; Paxton JW
    Cancer Chemother Pharmacol; 2002 Feb; 49(2):126-32. PubMed ID: 11862426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.