BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24105432)

  • 1. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin.
    Haller JD; Schanda P
    J Biomol NMR; 2013 Nov; 57(3):263-80. PubMed ID: 24105432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy.
    Schanda P; Meier BH; Ernst M
    J Am Chem Soc; 2010 Nov; 132(45):15957-67. PubMed ID: 20977205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate measurement of one-bond H-X heteronuclear dipolar couplings in MAS solid-state NMR.
    Schanda P; Meier BH; Ernst M
    J Magn Reson; 2011 Jun; 210(2):246-59. PubMed ID: 21482161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy.
    Lorieau JL; McDermott AE
    J Am Chem Soc; 2006 Sep; 128(35):11505-12. PubMed ID: 16939274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo determination of bond orientations and order parameters from residual dipolar couplings with high accuracy.
    Briggman KB; Tolman JR
    J Am Chem Soc; 2003 Aug; 125(34):10164-5. PubMed ID: 12926926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-free analysis of protein backbone motion from residual dipolar couplings.
    Peti W; Meiler J; Brüschweiler R; Griesinger C
    J Am Chem Soc; 2002 May; 124(20):5822-33. PubMed ID: 12010057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules.
    Schanda P; Ernst M
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():1-46. PubMed ID: 27110043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of Sub-Microsecond Protein Methyl-Side Chain Dynamics by Nanoparticle-Assisted NMR Spin Relaxation.
    Xiang X; Hansen AL; Yu L; Jameson G; Bruschweiler-Li L; Yuan C; Brüschweiler R
    J Am Chem Soc; 2021 Sep; 143(34):13593-13604. PubMed ID: 34428032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-consistent residual dipolar coupling based model-free analysis for the robust determination of nanosecond to microsecond protein dynamics.
    Lakomek NA; Walter KF; Farès C; Lange OF; de Groot BL; Grubmüller H; Brüschweiler R; Munk A; Becker S; Meiler J; Griesinger C
    J Biomol NMR; 2008 Jul; 41(3):139-55. PubMed ID: 18523727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic small amplitude Peptide plane dynamics in proteins from residual dipolar couplings.
    Bernadó P; Blackledge M
    J Am Chem Soc; 2004 Apr; 126(15):4907-20. PubMed ID: 15080696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation?
    Clore GM; Schwieters CD
    J Am Chem Soc; 2004 Mar; 126(9):2923-38. PubMed ID: 14995210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein conformational flexibility from structure-free analysis of NMR dipolar couplings: quantitative and absolute determination of backbone motion in ubiquitin.
    Salmon L; Bouvignies G; Markwick P; Lakomek N; Showalter S; Li DW; Walter K; Griesinger C; Brüschweiler R; Blackledge M
    Angew Chem Int Ed Engl; 2009; 48(23):4154-7. PubMed ID: 19415702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution.
    Lange OF; Lakomek NA; Farès C; Schröder GF; Walter KF; Becker S; Meiler J; Grubmüller H; Griesinger C; de Groot BL
    Science; 2008 Jun; 320(5882):1471-5. PubMed ID: 18556554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of interdomain dynamics in a two-domain protein using residual dipolar couplings together with 15N relaxation data.
    Ryabov Y; Fushman D
    Magn Reson Chem; 2006 Jul; 44 Spec No():S143-51. PubMed ID: 16823894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing molecular motion by double-quantum (13C,13C) solid-state NMR spectroscopy: application to ubiquitin.
    Schneider R; Seidel K; Etzkorn M; Lange A; Becker S; Baldus M
    J Am Chem Soc; 2010 Jan; 132(1):223-33. PubMed ID: 20000710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in solid-state relaxation methodology for probing site-specific protein dynamics.
    Lewandowski JR
    Acc Chem Res; 2013 Sep; 46(9):2018-27. PubMed ID: 23621579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein conformational dynamics studied by
    Gauto DF; Hessel A; Rovó P; Kurauskas V; Linser R; Schanda P
    Solid State Nucl Magn Reson; 2017 Oct; 87():86-95. PubMed ID: 28438365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements.
    Lamley JM; Lougher MJ; Sass HJ; Rogowski M; Grzesiek S; Lewandowski JR
    Phys Chem Chem Phys; 2015 Sep; 17(34):21997-2008. PubMed ID: 26234369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thorough dynamic interpretation of residual dipolar couplings in ubiquitin.
    Lakomek NA; Carlomagno T; Becker S; Griesinger C; Meiler J
    J Biomol NMR; 2006 Feb; 34(2):101-15. PubMed ID: 16518697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.