BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 24105557)

  • 1. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.
    Tanaka Y; Kawamoto Y; Fujita M; Noda S
    Opt Express; 2013 Aug; 21(17):20111-8. PubMed ID: 24105557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers.
    Callahan DM; Horowitz KA; Atwater HA
    Opt Express; 2013 Dec; 21(25):30315-26. PubMed ID: 24514610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures.
    Ishizaki K; De Zoysa M; Tanaka Y; Umeda T; Kawamoto Y; Noda S
    Opt Express; 2015 Sep; 23(19):A1040-50. PubMed ID: 26406734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of broadband solar absorption beyond the lambertian limit in certain thin silicon photonic crystals.
    Hsieh ML; Kaiser A; Bhattacharya S; John S; Lin SY
    Sci Rep; 2020 Jul; 10(1):11857. PubMed ID: 32678229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural design of photonic crystal thin film silicon solar cells by sensitivity analysis: Inclusion of electrode absorption.
    Kawamoto Y; Tanaka Y; Ishizaki K; De Zoysa M; Asano T; Noda S
    Opt Express; 2015 Jul; 23(15):A896-902. PubMed ID: 26367689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications.
    Buencuerpo J; Munioz-Camuniez LE; Dotor ML; Postigo PA
    Opt Express; 2012 Jul; 20 Suppl 4():A452-64. PubMed ID: 22828614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining randomly textured surfaces and photonic crystals for the photon management in thin film microcrystalline silicon solar cells.
    Wiesendanger S; Zilk M; Pertsch T; Rockstuhl C; Lederer F
    Opt Express; 2013 May; 21 Suppl 3():A450-9. PubMed ID: 24104433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-perfect absorption by photonic crystals with a broadband and omnidirectional impedance-matching property.
    Luo J; Lai Y
    Opt Express; 2019 May; 27(11):15800-15811. PubMed ID: 31163771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Broadband Electromagnetic Absorption in Silicon Film with Photonic Crystal Surface and Random Gold Grooves Reflector.
    Chen ZH; Qiao N; Yang Y; Ye H; Liu S; Wang W; Wang Y
    Sci Rep; 2015 Aug; 5():12794. PubMed ID: 26238270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells.
    Mihi A; Míguez H
    J Phys Chem B; 2005 Aug; 109(33):15968-76. PubMed ID: 16853026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic crystals and optical mode engineering for thin film photovoltaics.
    Gomard G; Peretti R; Drouard E; Meng X; Seassal C
    Opt Express; 2013 May; 21 Suppl 3():A515-27. PubMed ID: 24104440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application.
    Yang F; Zhang Y; Hao Y; Cui Y; Wang W; Ji T; Shi F; Wei B
    Appl Opt; 2015 Dec; 54(34):10232-9. PubMed ID: 26836682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells.
    Meng X; Depauw V; Gomard G; El Daif O; Trompoukis C; Drouard E; Jamois C; Fave A; Dross F; Gordon I; Seassal C
    Opt Express; 2012 Jul; 20 Suppl 4():A465-75. PubMed ID: 22828615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light trapping in randomly arranged silicon nanorocket arrays for photovoltaic applications.
    Zhang FQ; Peng KQ; Sun RN; Hu Y; Lee ST
    Nanotechnology; 2015 Sep; 26(37):375401. PubMed ID: 26303032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.
    Bozzola A; Liscidini M; Andreani LC
    Opt Express; 2012 Mar; 20 Suppl 2():A224-44. PubMed ID: 22418672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design.
    Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z
    ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband, polarization-insensitive and wide-angle absorption enhancement of a-Si:H/μc-Si:H tandem solar cells by nanopatterning a-Si:H layer.
    Li X; Zhang C; Yang Z; Shang A
    Opt Express; 2013 Jul; 21 Suppl 4():A677-86. PubMed ID: 24104494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.