These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 24105590)
1. Straightforward method for measuring optical fiber's nonlinear coefficient based on phase mismatching FWM. Huang G; Yamamoto Y; Hirano M; Maruta A; Sasaki T; Kitayama K Opt Express; 2013 Aug; 21(17):20463-9. PubMed ID: 24105590 [TBL] [Abstract][Full Text] [Related]
2. Design and optimization of highly nonlinear low-dispersion crystal fiber with high birefringence for four-wave mixing. Zhang YN; Ren LY; Gong YK; Li XH; Wang LR; Sun CD Appl Opt; 2010 Jun; 49(16):3208-14. PubMed ID: 20517392 [TBL] [Abstract][Full Text] [Related]
4. An efficient broad-band mid-wave IR fiber optic light source: design and performance simulation. Barh A; Ghosh S; Varshney RK; Pal BP Opt Express; 2013 Apr; 21(8):9547-55. PubMed ID: 23609665 [TBL] [Abstract][Full Text] [Related]
5. Novel phase-matching condition for a four wave mixing experiment in an optical fiber. Jung SJ; Lee JY; Kim DY Opt Express; 2006 Jan; 14(1):35-43. PubMed ID: 19503313 [TBL] [Abstract][Full Text] [Related]
7. Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. Hu J; Menyuk CR; Shaw LB; Sanghera JS; Aggarwal ID Opt Express; 2010 Mar; 18(7):6722-39. PubMed ID: 20389694 [TBL] [Abstract][Full Text] [Related]
8. Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability. Wong GK; Chen AY; Ha S; Kruhlak R; Murdoch S; Leonhardt R; Harvey J; Joly N Opt Express; 2005 Oct; 13(21):8662-70. PubMed ID: 19498897 [TBL] [Abstract][Full Text] [Related]
9. Accurate Measurements of the Zero-Dispersion Wavelength in Optical Fibers. Mechels SE; Schlager JB; Franzen DL J Res Natl Inst Stand Technol; 1997; 102(3):333-347. PubMed ID: 27805150 [TBL] [Abstract][Full Text] [Related]
10. Dispersion bistability of a reflective fiber-optic mode converter. Shi CX Opt Lett; 1996 Jan; 21(1):33-5. PubMed ID: 19865295 [TBL] [Abstract][Full Text] [Related]
11. Exciting fluorescence compounds on an optical fiber's side surface with a liquid core waveguide. Ray JC; Almas MS; Tao S Opt Lett; 2016 Jan; 41(1):100-3. PubMed ID: 26696168 [TBL] [Abstract][Full Text] [Related]
14. Cancellation of four-wave mixing in a single-mode fiber by midway optical phase conjugation. Watanabe S Opt Lett; 1994 Sep; 19(17):1308-10. PubMed ID: 19855503 [TBL] [Abstract][Full Text] [Related]
15. A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation. Zhang WQ; Afshar V S; Monro TM Opt Express; 2009 Oct; 17(21):19311-27. PubMed ID: 20372667 [TBL] [Abstract][Full Text] [Related]
16. Optical parametric oscillator based on four-wave mixing in microstructure fiber. Sharping JE; Fiorentino M; Kumar P; Windeler RS Opt Lett; 2002 Oct; 27(19):1675-7. PubMed ID: 18033332 [TBL] [Abstract][Full Text] [Related]
18. Four-wave-mixing-based wavelength conversion using a single-walled carbon-nanotube-deposited planar lightwave circuit waveguide. Chow KK; Yamashita S; Set SY Opt Lett; 2010 Jun; 35(12):2070-2. PubMed ID: 20548389 [TBL] [Abstract][Full Text] [Related]
19. Design and fabrication of dispersion controlled highly nonlinear fibers for far-detuned four-wave mixing frequency conversion. Ahmedou SE; Dauliat R; Parriaux A; Malfondet A; Millot G; Labonte L; Tanzilli S; Dalidet R; Delagnes JC; Roy P; Jamier R Opt Express; 2022 Mar; 30(6):8550-8559. PubMed ID: 35299306 [TBL] [Abstract][Full Text] [Related]
20. Direct continuous-wave measurement of n(2) in various types of telecommunication fiber at 1.55 microm. Boskovic A; Chernikov SV; Taylor JR; Gruner-Nielsen L; Levring OA Opt Lett; 1996 Dec; 21(24):1966-8. PubMed ID: 19881861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]