These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 24105951)

  • 1. From sediment to tissue and tissue to sediment: an evaluation of statistical bioaccumulation models.
    Judd N; Tear L; Toll J
    Integr Environ Assess Manag; 2014 Jan; 10(1):102-13. PubMed ID: 24105951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recommendations for the derivation and use of biota-sediment bioaccumulation models for carcinogenic polycyclic aromatic hydrocarbons.
    Replinger S; Katka S; Toll J; Church B; Saban L
    Integr Environ Assess Manag; 2017 Nov; 13(6):1060-1071. PubMed ID: 28585730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaccumulation of PCBs in aquatic biota from a tidal freshwater marsh ecosystem.
    Crimmins BS; Brown PD; Kelso DP; Foster GD
    Arch Environ Contam Toxicol; 2002 May; 42(4):396-404. PubMed ID: 11994779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Bioaccumulation in Marine Benthic Invertebrates Using a Multispecies Experimental Approach.
    Diepens NJ; Van den Heuvel-Greve MJ; Koelmans AA
    Environ Sci Technol; 2015 Nov; 49(22):13575-85. PubMed ID: 26465976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing the design of bioaccumulation factor and biota-sediment accumulation factor field studies.
    Burkhard LP
    Environ Toxicol Chem; 2003 Feb; 22(2):351-60. PubMed ID: 12558167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes.
    Moermond CT; Zwolsman JJ; Koelmans AA
    Environ Sci Technol; 2005 May; 39(9):3101-9. PubMed ID: 15926558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benthic injury dose-response models for polychlorinated biphenyl-contaminated sediment using equilibrium partitioning.
    Finkelstein K; Beckvar N; Dillon T
    Environ Toxicol Chem; 2017 May; 36(5):1311-1329. PubMed ID: 27779321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of PCDDs/DFs and coplanar-PCBs in an aquatic food chain of Tokyo Bay.
    Naito W; Jin J; Kang YS; Yamamuro M; Masunaga S; Nakanishi J
    Chemosphere; 2003 Oct; 53(4):347-62. PubMed ID: 12946393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation of PCB congeners in marine benthic infauna.
    Magnusson K; Ekelund R; Grabic R; Bergqvist PA
    Mar Environ Res; 2006 May; 61(4):379-95. PubMed ID: 16413050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of PCB bioaccumulation by Lumbriculus variegatus in field-collected sediments.
    Burkhard LP; Mount DR; Highland TL; Hockett JR; Norberg-King T; Billa N; Hawthorne SB; Miller DJ; Grabanski CB
    Environ Toxicol Chem; 2013 Jul; 32(7):1495-503. PubMed ID: 23450771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in oligochaetes.
    Sormunen AJ; Leppänen MT; Kukkonen JV
    Environ Toxicol Chem; 2008 Apr; 27(4):854-63. PubMed ID: 18333684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decamethylcyclopentasiloxane (D5) spiked sediment: bioaccumulation and toxicity to the benthic invertebrate Hyalella azteca.
    Norwood WP; Alaee M; Sverko E; Wang D; Brown M; Galicia M
    Chemosphere; 2013 Oct; 93(5):805-12. PubMed ID: 23273736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment.
    Xia X; Chen X; Zhao X; Chen H; Shen M
    Environ Sci Technol; 2012 Nov; 46(22):12467-75. PubMed ID: 23121516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAHs in Water, Sediment and Biota in an Area with Port Activities.
    Froehner S; Rizzi J; Vieira LM; Sanez J
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):236-246. PubMed ID: 29855679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting bioaccumulation of polycyclic aromatic hydrocarbons in soft-shelled clams (Mya arenaria) using field deployments of polyethylene passive samplers.
    Fernandez LA; Gschwend PM
    Environ Toxicol Chem; 2015 May; 34(5):993-1000. PubMed ID: 25598269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of potential relationships between chemical contaminants in sediments and aquatic organisms from the lower Passaic River, New Jersey, USA.
    Iannuzzi J; Butcher M; Iannuzzi T
    Environ Toxicol Chem; 2011 Jul; 30(7):1721-8. PubMed ID: 21520249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biota-Sediment Accumulation Factors for Per- and Polyfluoroalkyl Substances.
    Burkhard LP; Votava LK
    Environ Toxicol Chem; 2023 Feb; 42(2):277-295. PubMed ID: 36398857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioavailability of PCBs from field-collected sediments: application of Tenax extraction and matrix-SPME techniques.
    Trimble TA; You J; Lydy MJ
    Chemosphere; 2008 Mar; 71(2):337-44. PubMed ID: 17942136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor.
    Huang PC; Tien CJ; Sun YM; Hsieh CY; Lee CC
    Chemosphere; 2008 Sep; 73(4):539-44. PubMed ID: 18687453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective supercritical fluid extraction as a tool for determining the PCB fraction accessible for uptake by chironomid larve in a limnic sediment.
    Nilsson T; Björklund E
    Chemosphere; 2005 Jun; 60(1):141-6. PubMed ID: 15910913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.