These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 24106009)
1. Targeted synthesis of porous aromatic frameworks and their composites for versatile, facile, efficacious, and durable antibacterial polymer coatings. Yuan Y; Sun F; Zhang F; Ren H; Guo M; Cai K; Jing X; Gao X; Zhu G Adv Mater; 2013 Dec; 25(45):6619-24. PubMed ID: 24106009 [TBL] [Abstract][Full Text] [Related]
2. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114 [TBL] [Abstract][Full Text] [Related]
3. Pyridinium-Yne Click Polymerization: A Facile Strategy toward Functional Poly(Vinylpyridinium Salt)s with Multidrug-Resistant Bacteria Killing Ability. He B; Li Y; Li M; Kang M; Liu X; Huang J; Wang D; Lam JWY; Tang BZ Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405030. PubMed ID: 38695837 [TBL] [Abstract][Full Text] [Related]
5. Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. Liu M; Liu T; Chen X; Yang J; Deng J; He W; Zhang X; Lei Q; Hu X; Luo G; Wu J J Nanobiotechnology; 2018 Nov; 16(1):89. PubMed ID: 30419925 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and cytotoxicity evaluation of duplex-treated silver-containing antibacterial TiO₂ coatings. Zhang X; Wu H; Geng Z; Huang X; Hang R; Ma Y; Yao X; Tang B Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():402-10. PubMed ID: 25491845 [TBL] [Abstract][Full Text] [Related]
7. GO-AgCl/Ag nanocomposites with enhanced visible light-driven catalytic properties for antibacterial and biofilm-disrupting applications. Wang X; Han Q; Yu N; Wang T; Wang C; Yang R Colloids Surf B Biointerfaces; 2018 Feb; 162():296-305. PubMed ID: 29216517 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles. Seyfi J; Panahi-Sarmad M; OraeiGhodousi A; Goodarzi V; Khonakdar HA; Asefnejad A; Shojaei S Colloids Surf B Biointerfaces; 2019 Nov; 183():110438. PubMed ID: 31470223 [TBL] [Abstract][Full Text] [Related]
9. Silver Oxide Coatings with High Silver-Ion Elution Rates and Characterization of Bactericidal Activity. Goderecci SS; Kaiser E; Yanakas M; Norris Z; Scaturro J; Oszust R; Medina CD; Waechter F; Heon M; Krchnavek RR; Yu L; Lofland SE; Demarest RM; Caputo GA; Hettinger JD Molecules; 2017 Sep; 22(9):. PubMed ID: 28880225 [TBL] [Abstract][Full Text] [Related]
10. Silver doped titanium oxide-PDMS hybrid coating inhibits Staphylococcus aureus and Staphylococcus epidermidis growth on PEEK. Tran N; Kelley MN; Tran PA; Garcia DR; Jarrell JD; Hayda RA; Born CT Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():201-209. PubMed ID: 25686940 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, surface properties and antimicrobial performance of novel gemini pyridinium surfactants. Hao J; Qin T; Zhang Y; Li Y; Zhang Y Colloids Surf B Biointerfaces; 2019 Sep; 181():814-821. PubMed ID: 31247406 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of a three-dimensional porous Z-scheme silver/silver bromide/graphitic carbon nitride@nitrogen-doped graphene aerogel with enhanced visible-light photocatalytic and antibacterial activities. Chen Y; Wang P; Liang Y; Zhao M; Jiang Y; Wang G; Zou P; Zeng J; Zhang Y; Wang Y J Colloid Interface Sci; 2019 Feb; 536():389-398. PubMed ID: 30380438 [TBL] [Abstract][Full Text] [Related]
13. Disruption and activation of blood platelets in contact with an antimicrobial composite coating consisting of a pyridinium polymer and AgBr nanoparticles. Stevens KN; Knetsch ML; Sen A; Sambhy V; Koole LH ACS Appl Mater Interfaces; 2009 Sep; 1(9):2049-54. PubMed ID: 20355831 [TBL] [Abstract][Full Text] [Related]
14. Mussel-Inspired Antibacterial and Biocompatible Silver-Carbon Nanotube Composites: Green and Universal Nanointerfacial Functionalization. Nie C; Cheng C; Ma L; Deng J; Zhao C Langmuir; 2016 Jun; 32(23):5955-65. PubMed ID: 27189807 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial effect of PEO coating with silver on AA7075. Cerchier P; Pezzato L; Brunelli K; Dolcet P; Bartolozzi A; Bertani R; Dabalà M Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():554-564. PubMed ID: 28415499 [TBL] [Abstract][Full Text] [Related]
16. Silver oxide decorated urchin-like microporous organic polymer composites as versatile antibacterial organic coating materials. Zhang Y; Tang Y; Liao Q; Qian Y; Zhu L; Yu DG; Xu Y; Lu X; Kim I; Song W J Mater Chem B; 2024 Feb; 12(8):2054-2069. PubMed ID: 38305698 [TBL] [Abstract][Full Text] [Related]
17. In-situ photo-assisted deposition of silver particles on hydrogel fibers for antibacterial applications. Raho R; Paladini F; Lombardi FA; Boccarella S; Zunino B; Pollini M Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():42-9. PubMed ID: 26117737 [TBL] [Abstract][Full Text] [Related]
18. Magnetic nanoparticles modified with quaternarized N-halamine based polymer and their antibacterial properties. Chen X; Hu B; Xiang Q; Yong C; Liu Z; Xing X J Biomater Sci Polym Ed; 2016 Aug; 27(11):1187-99. PubMed ID: 27167036 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Robust Antibacterial Coatings Based on an Organic-Inorganic Hybrid System. Cheng Q; Guo X; Hao X; Shi Z; Zhu S; Cui Z ACS Appl Mater Interfaces; 2019 Nov; 11(45):42607-42615. PubMed ID: 31631653 [TBL] [Abstract][Full Text] [Related]
20. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials. Ni S; Li X; Yang P; Ni S; Hong F; Webster TJ Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():700-8. PubMed ID: 26478362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]